RECENT UPDATE OF ZERUMBONE AS ANTI-COLON CANCER AGENT: A REVIEW

Main Article Content

Sarmoko Sarmoko
Riri Fauziyya
Miralda Zahra
Nisa Yulianti Suprahman
Winni Nur Auli
Arif Ashari

Abstract

Colorectal cancer (CRC) remains a leading cause of cancer-related deaths worldwide, with limited effective therapies due to drug resistance and adverse effects. Zerumbone, a sesquiterpene isolated from Zingiber zerumbet Smith, has emerged as a promising natural anticancer agent. This review examines zerumbone's anti-colorectal cancer properties, including induction of apoptosis and cell cycle arrest, inhibition of invasion and metastasis, anti-angiogenic activity, and anti-inflammatory effects. Additionally, zerumbone demonstrates antioxidant properties, modulates gut microbiota composition, and targets multiple signaling pathways involved in CRC pathogenesis. Structure-activity relationship studies reveal the critical role of the α,β-unsaturated carbonyl group in its bioactivity. Despite promising preclinical evidence, clinical validation remains necessary to establish zerumbone's therapeutic potential for colorectal cancer management.

Article Details

How to Cite
Sarmoko, S., Fauziyya, R., Zahra, M., Suprahman, N. Y., Auli, W. N., & Ashari, A. (2025). RECENT UPDATE OF ZERUMBONE AS ANTI-COLON CANCER AGENT: A REVIEW. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 12(2), 350–360. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/9338
Section
Review

References

Albaayit, S., Maharjan, R., Abdullah, R., & Hezmee Mohd Noor, M. (2022). Eval-uation of anti-methicillin-resistant Staphylococcus aureus property of zerumbone. Journal of Applied Bio-medicine, 20(1), 15-21. https://doi.org/10.32725/jab.2022.002

Al-Zubairi, A. S. (2018). Anti-Proliferative Activity of Zerumbone Against Tumour Cell Lines. OnLine Journal of Biologi-cal Sciences, 18(2), 123-129. https://doi.org/10.3844/ojbsci.2018.123.129

Auli, W. N., Suprahman, N. Y., Fauziyya, R., Sarmoko, Ashari, A., Fazila, S., Azzahrah, Q. A., Pasaribu, R., Liswa-tini, P., Al-Husni, I. A. M., & Salsabila, D. N. D. (2024). Molecular Docking

Analysis of Zerumbone Derivatives as XIAP-BIR3 Inhibitor for Anticancer Agent. Nusantara Science and Tech-nology Proceedings, 2024, 8-14. https://doi.org/10.11594/nstp.2024.4602

Bukowski, K., Kciuk, M., & Kontek, R. (2020). Mechanisms of Multidrug Re-sistance in Cancer Chemotherapy. In-ternational Journal of Molecular Sci-ences, 21(9), 3233. https://doi.org/10.3390/ijms21093233

Cho, H.-W., Rhee, K.-J., & Eom, Y.-B. (2020). Zerumbone Restores Gut Mi-crobiota Composition in ETBF Colo-nized AOM/DSS Mice. Journal of Mi-crobiology and Biotechnology, 30(11), 1640-1650. https://doi.org/10.4014/jmb.2006.06034

Dehghan, R., Najafi, R., Azizi Jalilian, F., Saidijam, M., Radaei, Z., Zamani, A., Ezati, R., Asna-Ashari, F., & Amini, R. (2021). A promising effect of zerumbone with improved anti-tumor-promoting inflammation activity of miR-34a in colorectal cancer cell lines. Molecular Biology Reports, 48(1), 203-218. https://doi.org/10.1007/s11033-020-06035-9

Dohlman, A. B., Klug, J., Mesko, M., Gao, I. H., Lipkin, S. M., Shen, X., & Iliev, I. D. (2022). A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell, 185(20), 3807-3822.e12. https://doi.org/10.1016/j.cell.2022.09.015

Fadhel Abb, S., & Maharjan, R. (2018). Im-munomodulation of Zerumbone via Decreasing the Production of Reac-tive Oxygen Species from Immune Cells. Pakistan Journal of Biological Sciences, 21(9), 475-479. https://doi.org/10.3923/pjbs.2018.475.479

Fauziyya, R., Auli, W. N., Suprahman, N. Y., Sarmoko, S., Ashari, A., Alsadila, K., Agustin, L., Fazila, S., Zahra, M., Pane, E. C., & Sukrasno, S. (2023). Bioinformatic and Molecular Docking Study of Zerumbone and Its Derivates against Colorectal Cancer. Indonesian Journal of Cancer Chemoprevention, 14(1), 39-48. https://doi.org/10.14499/indonesianjcanchemoprev14iss1pp39-48

Gao, R., Xia, K., Wu, M., Zhong, H., Sun, J., Zhu, Y., Huang, L., Wu, X., Yin, L., Yang, R., Chen, C., & Qin, H. (2022). Alterations of Gut Mycobiota Profiles in Adenoma and Colorectal Cancer. Frontiers in Cellular and Infection Mi-crobiology, 12, 839435. https://doi.org/10.3389/fcimb.2022.839435

GCO. (2022). Cancer Incident in Indonesia. Global Cancer Observatory. https://gco.iarc.who.int/media/globocan/factsheets/populations/360-indonesia-fact-sheet.pdf

Girisa, S., Shabnam, B., Monisha, J., Fan, L., Halim, C. E., Arfuso, F., Ahn, K. S., Sethi, G., & Kunnumakkara, A. B. (2019). Potential of Zerumbone as an Anti-Cancer Agent. Molecules, 24(4), 734. https://doi.org/10.3390/molecules24040734

Hosseini, N., Khoshnazar, A., Saidijam, M., Azizi Jalilian, F., Najafi, R., Mah-davinezhad, A., Ezati, R., Sotanian, A., & Amini, R. (2019). Zerumbone Suppresses Human Colorectal Can-cer Invasion and Metastasis via Modu-lation of FAk/PI3k/NFκB-uPA Path-way. Nutrition and Cancer, 71(1), 159-171. https://doi.org/10.1080/01635581.2018.1540719

Hseu, Y.-C., Chang, C.-T., Gowrisankar, Y. V., Chen, X.-Z., Lin, H.-C., Yen, H.-R., & Yang, H.-L. (2019). Zerumbone Ex-hibits Antiphotoaging and Dermato-protective Properties in Ultraviolet A-Irradiated Human Skin Fibroblast Cells via the Activation of Nrf2/ARE Defensive Pathway. Oxidative Medi-cine and Cellular Longevity, 2019, 4098674. https://doi.org/10.1155/2019/4098674

Hwang, S., Jo, M., Hong, J. E., Park, C. O., Lee, C. G., & Rhee, K.-J. (2020). Pro-tective Effects of Zerumbone on Co-lonic Tumorigenesis in Enterotoxigen-ic Bacteroides fragilis (ETBF)-Colonized AOM/DSS BALB/c Mice. International Journal of Molecular

Sciences, 21(3), 857. https://doi.org/10.3390/ijms21030857

Hwang, S., Jo, M., Hong, J. E., Park, C. O., Lee, C. G., Yun, M., & Rhee, K.-J. (2019). Zerumbone Suppresses En-terotoxigenic Bacteroides fragilis In-fection-Induced Colonic Inflammation through Inhibition of NF-κΒ. Interna-tional Journal of Molecular Sciences, 20(18), 4560. https://doi.org/10.3390/ijms20184560

Ibáñez, M. D., Sánchez-Ballester, N. M., & Blázquez, M. A. (2022). Healthy Zerumbone: From Natural Sources to Strategies to Improve Its Bioavailabil-ity and Oral Administration. Plants, 12(1), 5. https://doi.org/10.3390/plants12010005

Li, J., Ma, X., Chakravarti, D., Shalapour, S., & DePinho, R. A. (2021). Genetic and biological hallmarks of colorectal cancer. Genes & Development, 35(11-12), 787-820. https://doi.org/10.1101/gad.348226.120

Liu, P., Wang, Y., Yang, G., Zhang, Q., Meng, L., Xin, Y., & Jiang, X. (2021). The role of short-chain fatty acids in intestinal barrier function, inflamma-tion, oxidative stress, and colonic car-cinogenesis. Pharmacological Re-search, 165, 105420. https://doi.org/10.1016/j.phrs.2021.105420

Lopez, A., Reyna, D. E., Gitego, N., Kopp, F., Zhou, H., Miranda-Roman, M. A., Nordstrøm, L. U., Narayanagari, S.-R., Chi, P., Vilar, E., Tsirigos, A., & Ga-vathiotis, E. (2022). Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer. Nature Communications, 13(1), 1199. https://doi.org/10.1038/s41467-022-28741-7

Malki, A., ElRuz, R. A., Gupta, I., Allouch, A., Vranic, S., & Al Moustafa, A.-E. (2020). Molecular Mechanisms of Co-lon Cancer Progression and Metasta-sis: Recent Insights and Advance-ments. International Journal of Molec-ular Sciences, 22(1), 130. https://doi.org/10.3390/ijms22010130

Mármol, I., Sánchez-de-Diego, C., Pradilla Dieste, A., Cerrada, E., & Rodriguez Yoldi, M. (2017). Colorectal Carcino-ma: A General Overview and Future Perspectives in Colorectal Cancer. In-ternational Journal of Molecular Sci-ences, 18(1), 197. https://doi.org/10.3390/ijms18010197

Memari, F., Mirzavi, F., Jalili‐Nik, M., Afsha-ri, A. R., Ghorbani, A., & Soukhtanloo, M. (2022). Tumor-Inhibitory Effects of Zerumbone Against HT-29 Human Colorectal Cancer Cells. International Journal of Toxicology, 41(5), 402-411. https://doi.org/10.1177/10915818221104417

Michel, M., Kaps, L., Maderer, A., Galle, P. R., & Moehler, M. (2021). The Role of p53 Dysfunction in Colorectal Cancer and Its Implication for Therapy. Can-cers, 13(10), 2296. https://doi.org/10.3390/cancers13102296

Murakami, A., Takahashi, D., Kinoshita, T., Koshimizu, K., Kim, H. W., Yoshihiro, A., Nakamura, Y., Jiwajinda, S., Terao, J., & Ohigashi, H. (2002). Zerumbone, a Southeast Asian ginger sesquiterpene, markedly suppresses free radical generation, proinflamma-tory protein production, and cancer cell proliferation accompanied by apoptosis: the alpha,beta-unsaturated carbonyl group is a prerequisite. Car-cinogenesis, 23(5), 795-802. https://doi.org/10.1093/carcin/23.5.795

Obeng, E. (2021). Apoptosis (programmed cell death) and its signals - A review. Brazilian Journal of Biology, 81(4), 1133-1143. https://doi.org/10.1590/1519-6984.228437

Okuda, S., Shimada, Y., Tajima, Y., Yuza, K., Hirose, Y., Ichikawa, H., Na-gahashi, M., Sakata, J., Ling, Y., Miura, N., Sugai, M., Watanabe, Y., Takeuchi, S., & Wakai, T. (2021). Pro-filing of host genetic alterations and in-tra-tumor microbiomes in colorectal cancer. Computational and Structural Biotechnology Journal, 19, 3330-3338. https://doi.org/10.1016/j.csbj.2021.05.049

Park, J.-H., Park, G. M., & Kim, J.-K. (2015). Zerumbone, Sesquiterpene Photochemical from Ginger, Inhibits Angiogenesis. The Korean Journal of Physiology & Pharmacology, 19(4), 335-341. https://doi.org/10.4196/kjpp.2015.19.4.335

Radaei, Z., Zamani, A., Najafi, R., Saidijam, M., Jalilian, F. A., Ezati, R., Solgi, G., & Amini, R. (2020). Promising Effects of Zerumbone on the Regulation of Tumor-promoting Cytokines Induced by TNF-α-activated Fibroblasts. Cur-rent Medical Science, 40(6), 1075-1084. https://doi.org/10.1007/s11596-020-2289-7

Sethy, C., & Kundu, C. N. (2021). 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivi-ty against cancer: Implication of DNA repair inhibition. Biomedicine & Phar-macotherapy, 137, 111285. https://doi.org/10.1016/j.biopha.2021.111285

Shamoto, T., Matsuo, Y., Shibata, T., Tsu-boi, K., Nagasaki, T., Takahashi, H., Funahashi, H., Okada, Y., & Takeya-ma, H. (2014). Zerumbone Inhibits Angiogenesis by Blocking NF-κB Ac-tivity in Pancreatic Cancer. Pancreas, 43(3), 396-404. https://doi.org/10.1097/MPA.0000000000000039

Shin, D.-S., & Eom, Y.-B. (2019). Zerumbone inhibits Candida albicans biofilm formation and hyphal growth. Canadian Journal of Microbiology, 65(10), 713-721. https://doi.org/10.1139/cjm-2019-0155

Singh, S. P., Nongalleima, K., Singh, N. I., Doley, P., Singh, C. B., Singh, T. R., & Sahoo, D. (2018). Zerumbone re-duces proliferation of HCT116 colon cancer cells by inhibition of TNF-alpha. Scientific Reports, 8(1), 4090. https://doi.org/10.1038/s41598-018-22362-1

Sithara, T., Dhanya, B. P., Arun, K. B., Sini, S., Dan, M., Kokkuvayil Vasu, R., & Nisha, P. (2018). Zerumbone, a Cyclic Sesquiterpene from Zingiber zerumbet Induces Apoptosis, Cell Cycle Arrest, and Antimigratory Effects in SW480 Colorectal Cancer Cells. Journal of Agricultural and Food Chemistry, 66(3), 602-612. https://doi.org/10.1021/acs.jafc.7b04472

Su, C.-C., Wang, S.-C., Chen, I.-C., Chiu, F.-Y., Liu, P.-L., Huang, C.-H., Huang, K.-H., Fang, S.-H., Cheng, W.-C., Huang, S.-P., Yeh, H.-C., Liu, C.-C., Lee, P.-Y., Huang, M.-Y., & Li, C.-Y. (2021). Zerumbone Suppresses the LPS-Induced Inflammatory Response and Represses Activation of the NLRP3 Inflammasome in Macrophag-es. Frontiers in Pharmacology, 12, 652860. https://doi.org/10.3389/fphar.2021.652860

Tan, J. W., Israf, D. A., & Tham, C. L. (2018). Major Bioactive Compounds in Essential Oils Extracted From the Rhizomes of Zingiber zerumbet (L) Smith: A Mini-Review on the Anti-allergic and Immunomodulatory Prop-erties. Frontiers in Pharmacology, 9, 652. https://doi.org/10.3389/fphar.2018.00652

Temby, M., Boye, T. L., Hoang, J., Nielsen, O. H., & Gubatan, J. (2023). Kinase Signaling in Colitis-Associated Colon Cancer and Inflammatory Bowel Dis-ease. Biomolecules, 13(11), 1620. https://doi.org/10.3390/biom13111620

Tomicic, M. T., Dawood, M., & Efferth, T. (2021). Epigenetic Alterations Up-stream and Downstream of p53 Sig-naling in Colorectal Carcinoma. Can-cers, 13(16), 4072. https://doi.org/10.3390/cancers13164072

Tsuboi, K., Matsuo, Y., Shamoto, T., Shi-bata, T., Koide, S., Morimoto, M., Guha, S., Sung, B., Aggarwal, B. B., Takahashi, H., & Takeyama, H. (2014). Zerumbone inhibits tumor an-giogenesis via NF-κB in gastric can-cer. Oncology Reports, 31(1), 57-64. https://doi.org/10.3892/or.2013.2842

Wang, M., Niu, J., Ou, L., Deng, B., Wang, Y., & Li, S. (2019). Zerumbone Pro-tects against Carbon Tetrachloride (CCl4)-Induced Acute Liver Injury in Mice via Inhibiting Oxidative Stress and the Inflammatory Response: In-volving the TLR4/NF-κB/COX-2 Path-way. Molecules, 24(10), 1964. https://doi.org/10.3390/molecules24101964

Yeh, W.-L., Huang, B.-R., Chen, G.-W., Charoensaensuk, V., Tsai, C.-F., Yang, L.-Y., Lu, D.-Y., Chen, M.-K., & Lin, C. (2022). Role of Zerumbone, a Phytochemical Sesquiterpenoid from Zingiber zerumbet Smith, in Maintain-ing Macrophage Polarization and Re-dox Homeostasis. Nutrients, 14(24), 5402. https://doi.org/10.3390/nu14245402

Yodkeeree, S., Sung, B., Limtrakul, P., & Aggarwal, B. B. (2009). Zerumbone Enhances TRAIL-Induced Apoptosis through the Induction of Death Recep-tors in Human Colon Cancer Cells: Evidence for an Essential Role of Re-active Oxygen Species. Cancer Re-search, 69(16), 6581-6589. https://doi.org/10.1158/0008-5472.CAN-09-1161

Zhao, H., Ming, T., Tang, S., Ren, S., Yang, H., Liu, M., Tao, Q., & Xu, H. (2022). Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Molecular Cancer, 21(1), 144. https://doi.org/10.1186/s12943-022-01616-7

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.