Characteristics and Genesis of Mount Pengki: A Scoria Cone of Dago Volcano, West Java, Indonesia
Main Article Content
Abstract
Scoria cones are a typical product of volcanic activity constructed by the bomb and lapilli-sized pyroclasts formed by Strombolian eruption. Mount Pengki is a scoria cone found in Miocene Dago Volcano, West Java. Mount Pengki was a remnant of a Miocene volcano that was exceptionally well preserved and exposed. This scoria cone contains layers of scoria beds and a lava flow unit. The study aims to characterize the exposed scoria bed deposits and investigate the eruptive history and degradation process of Mount Pengki. Field observation, including measured sections and detailed characterizations of the Mount Pengki quarry, allows us to observe its volcanic sequence from its internal structure toward the surface. Morphometric analysis of Mount Pengki can describe the degradation process undergone by the scoria cone. The early phase deposits were characterized by massive to weakly bedded, poorly sorted, clast-supported beds mainly composed of coarse lapilli to bombs/blocks scoria grain. The middle phase deposit typically shows well-stratified, well-sorted, clast-supported scoria beds with coarse ash to coarse lapilli grain size. The late phase deposit is similar to the middle phase deposit, with additional features of coarser-grain, reverse grading, and clast-supported lenticular beds. Eruptive mechanisms involved in the formation of Mount Pengki include ballistic transport of clasts, fallout deposition, and grain avalanching process. The degradation process was likely influenced by prolonged exposure to weathering, cone rim collapse, and regional deformation processes.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Introduction
By using or sharing content from EKSPLORIUM - Buletin Pusat Pengembangan Bahan Galian Nuklir ("the Journal"), you agree to follow these Terms and Conditions. The Journal's content is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) license. If you do not agree to these terms, please do not use the content.
2. How You Can Use the Content
-
Share: You can copy, share, and distribute the work, but only for non-commercial purposes.
-
Adapt: You can change, remix, or build on the work, as long as it is for non-commercial purposes and you share it under the same license (CC BY-NC-SA).
3. Attribution (Giving Credit)
When you use or share the content, you must:
-
Give proper credit to the author(s).
-
Mention the title of the work and the journal name.
-
Provide a link to the license (https://creativecommons.org/licenses/by-nc-sa/4.0/).
-
Indicate if you made any changes to the work.
4. Non-Commercial Use
You cannot use the work to make money or for any commercial activities. For example, you cannot sell or use the content in advertisements.
If you want to use the content for commercial purposes, you need to get permission from the author(s) or the publisher.
5. ShareAlike
If you make changes to the content (like creating a new version or remixing it), you must share your new version under the same CC BY-NC-SA license.
6. Exclusions
Some materials in the Journal may have different licenses or restrictions, such as third-party content (like images or datasets). You must respect the rules for those materials.
7. No Warranty
The content is provided "as is." The authors and publisher do not guarantee that the content is error-free or suitable for any specific purpose. Use the content at your own risk.
8. Modifications and Withdrawal of Content
The publisher and authors can update or remove content at any time. If content is removed, the previous versions will still follow these terms.
9. Ethical Use
You must use the content ethically and follow all relevant laws. This includes properly citing the original authors and not misusing the content.
10. Legal Compliance
You are responsible for making sure your use of the content follows the laws of your country. If you believe content violates your rights, please contact us.
11. Changes to Terms
These Terms and Conditions may be updated from time to time. Any changes will be posted on the Journal's website.
12. Contact Information
For questions about these Terms or for permission to use content commercially, please contact us at:
-
Email: eksplorium@brin.go.id
-
Website: https://ejournal.brin.go.id/eksplorium
Conclusion
By using the content from EKSPLORIUM - Buletin Pusat Pengembangan Bahan Galian Nuklir, you agree to follow these Terms and Conditions and the CC BY-NC-SA 4.0 International License.
References
[1] M. Awdankiewicz, “Reconstructing An Eroded Scoria Cone: The Miocene Sośnica Hill Volcano (Lower Silesia, SW Poland),” Geol. Q., vol. 49, no. 4, pp. 439–448, 2005.
[2] G. Kereszturi and K. Németh, “Sedimentology, Eruptive Mechanism and Facies Architecture of Basaltic Scoria Cones from The Auckland Volcanic Field (New Zealand),” J. Volcanol. Geotherm. Res., vol. 324, pp. 41–56, 2016, doi: 10.1016/j.jvolgeores.2016.05.012.
[3] H. Schmincke, Volcanism. Berlin Heidelberg: Springer-Verlag, 2004.
[4] G. Kereszturi and K. Nemeth, “Monogenetic Basaltic Volcanoes: Genetic Classification, Growth, Geomorphology and Degradation,” Updat. Volcanol. - New Adv. Underst. Volcan. Syst., no. May, pp. 2–88, 2012, doi: 10.5772/51387.
[5] D. Vespermann and H.-U. Schmincke, “Scoria Cones and Tuff Rings,” in Encyclopedia of Volcanoes, H. Sigurdsson, Ed., San Diego: Academic Press, 2000, pp. 683–694. [Online]. Available: https://oceanrep.geomar.de/id/eprint/ 31205.
[6] G. A. Valentine and T. K. P. Gregg, “Continental Basaltic Volcanoes - Processes and Problems,” J. Volcanol. Geotherm. Res., vol. 177, no. 4, pp. 857–873, 2008, doi: 10.1016/j.jvolgeores.2008.01.050.
[7] T. R. McGetchin, M. Settle, and B. A. Chouet, “Cinder Cone Growth Modeled After Northeast Crater, Mount Etna, Sicily,” J. Geophys. Res., vol. 79, no. 23, pp. 3257–3272, 1974, doi: 10.1029/jb079i023p03257.
[8] G. A. Valentine, D. Krier, F. V. Perry, and G. Heiken, “Scoria Cone Construction Mechanisms, Lathrop Wells Volcano, Southern Nevada, USA,” Geology, vol. 33, no. 8, pp. 629–632, 2005, doi: 10.1130/G21459.1.
[9] P. W. Francis and R. S. Thorpe, “Significance of Lithologic and Morphologic Variations of Pyroclastic Cones,” Geol. Soc. Am., vol. 85, no. 6, p. 927, 1974, doi: 10.1130/0016-7606(1974)85<927:solamv>2.0.co;2.
[10] I. G. B. E. Sucipta, I. Takashima, and H. Muraoka, “Morphometric Age and Petrological Characteristics of Volcanic Rocks from The Bajawa Cinder Cone Complex, Flores, Indonesia,” J. Mineral. Petrol. Sci., vol. 101, no. 2, pp. 48–68, 2006, doi: 10.2465/jmps.101.48.
[11] I. S. Sutawidjaja and R. Sukhyar, “Cinder cones of Mount Slamet , Central Java , Indonesia,” J. Geol. Indones., vol. 4, no. 1, pp. 57–75, 2009, doi: 10.17014/ijog.4.1.57-75.
[12] A. Harijoko, R. M. P. P. Gunawan, H. E. Wibowo, N. I. Setiawan, E. Handini, W. Suryanto, E. T. W. Mei “Formation of Mount Loyang: Easternmost Scoria Cone of Slamet Stratovolcano, Central Java, Indonesia,” AIP Conf. Proc., vol. 1987, no. 1, 2018, doi: 10.1063/1.5047348.
[13] T. Turkandi, Sidarto, D. A. Agustiyanto, and M. M. P. Hadiwidjoyo, Geological Map of Jakarta and Kepulauan Seribu Quadrangle, Jawa, Scale 1:250000, Geological Research and Development Centre, Bandung, 1992.
[14] H. Susiati, Yuliastuti, H. Syaiful, I. G. Sukadana, and E. E. Al Hakim, “Site and Environmental Evaluation in RDE Location, Puspiptek, Serpong, Indonesia,” AIP Conf. Proc., vol. 2180, no. December, 2019, doi: 10.1063/1.5135549.
[15] T. B. Adimedha, A. Harijoko, E. Handini, I. G. Sukadana, H. Syaeful, R. C. Ciputra, I. Rosianna, F. D. Indrastomo, F. Pratiwi, and Y. Rachael “Magmatic Evolution of Dago Volcano, West Java, Indonesia,” Eksplorium, vol. 44, no. 1, pp. 13–24, 2023, doi: 10.55981/eksplorium.2023.44.1.6873.
[16] T. Syahrulyati, V. Isnaniawardhani, M. F. Rosana, and Danwinantis, “Bojongmanik Formation Sedimentation Mechanism in The Middle to Late Miocene (N9-N17) in The Rangkasbitung Basin,” Sci. Contrib. Oil Gas, vol. 43, no. 3, pp. 115–123, 2020, doi: 10.29017/scog.43.3.551.
[17] Google Earth, “Gunung Pengki, Cikuda Wanaherang, Bogor Regency, West Java, Indonesia,” Maxar Technologies, 2023. [Online]. Available: http://www.earth.google.com. [Accessed: Aug. 20, 2023].
[18] Badan Informasi Geospasial, “Ina-Geoportal,” 2017. [Online]. Available: http://tanahair. indonesia.go.id/portal-web. [Accessed: Aug. 20, 2023].
[19] C. A. Wood, “Morphometric Analysis of Cinder Cone Degradation,” J. Volcanol. Geotherm. Res., vol. 8, no. 2–4, pp. 137–160, 1980, doi: 10.1016/0377-0273(80)90101-8.
[20] J. Dóniz-Páez, “Volcanic Geomorphological Classification of The Cinder Cones of Tenerife (Canary Islands, Spain),” Geomorphology, vol. 228, no. October, pp. 432–447, 2015, doi: 10.1016/j.geomorph.2014.10.004.
[21] R. Becerra-Ramírez, J. Dóniz-Páez, and E. González “Morphometric Analysis of Scoria Cones to Define the Campo de Calatrava Volcanic Region (Central Spain),” Land, vol. 11, no. 6, pp. 1–26, 2022, doi: 10.3390/land11060917 .
[22] K. Bloomfield, G. S. Rubio, and L. Wilson, “Plinian eruptions of Nevado de Toluca volcano, Mexico,” Geol. Rundschau, vol. 66, no. 1, pp. 120–146, 1977, doi: 10.1007/BF01989568.
[23] S. Kósik, K. Németh, G. Kereszturi, J. N. Procter, G. F. Zellmer, and N. Geshi, “Phreatomagmatic and Water-Influenced Strombolian Eruptions of A Small-Volume Parasitic Cone Complex on The Southern Ringplain of Mt. Ruapehu, New Zealand: Facies Architecture and Eruption Mechanisms of The Ohakune Volcanic Complex Controlled By An Unstable Fissure Eruption,” J. Volcanol. Geotherm. Res., vol. 327, pp. 99–115, 2016, doi: 10.1016/j.jvolgeores.2016.07.005.
[24] U. Martin and K. Németh, “How Strombolian Is A ‘Strombolian’ Scoria Cone? Some Irregularities in Scoria Cone Architecture from The Transmexican Volcanic Belt, Near Volcán Ceboruco, (Mexico) and Al Haruj (Libya),” J. Volcanol. Geotherm. Res., vol. 155, no. 1–2, pp. 104–118, 2006, doi: 10.1016/j.jvolgeores.2006.02.012.
[25] C. J. Edgar, J. A. Wolff, P. H. Olin, H. J. Nichols, A. Pittari, R. A. F. Cas, P. W. Reiners, T. L. Spell, and J. Martí, “The Late Quaternary Diego Hernandez Formation, Tenerife: Volcanology of A Complex Cycle of Voluminous Explosive Phonolitic Eruptions,” Elsevier BV, vol. 160, no. 1–2, pp. 59–85, 2007, doi: 10.1016/j.jvolgeores.2006.06.001.
[26] W. Scott, C. Gardner, G. Devoli, and A. Alvarez, “The A.D. 1835 Eruption of Volcán Cosigüina, Nicaragua: A Guide for Assessing Local Volcanic Hazards.” 2006. [Online]. Available: https://pubs.geoscienceworld.org/books/book/565/chapter/3802898.
[27] J. T. Gutmann, “Structure and Eruptive Cycle of Cinder Cones in The Pinacate Volcanic Field and The Controls of Strombolian Activity,” J. Geol., vol. 87, no. 4, pp. 448–454, 1979, doi: 10.1086/628432.
[28] A. Fornaciai, M. Favalli, D. Karátson, S. Tarquini, and E. Boschi, “Morphometry of Scoria Cones, and Their Relation to Geodynamic Setting: A DEM-based Analysis,” Elsevier BV, vol. 217–218, pp. 56–72, 2012, doi: 10.1016/j.jvolgeores.2011.12.012.
[29] S. Aribowo, L. Husson, D. H. Natawidjaja, C. Authemayou, M. R. Daryono, A. R. Puji, P. G. Valla, A. Pamumpuni, D. D. Wardhana, G. de-Gelder, D. Djarwadi, and M. Lorcery “Active Back-Arc Thrust in North West Java, Indonesia,” Tectonics, vol. 41, no. 7, pp. 1–23, 2022, doi: 10.1029/2021TC007120.