Evaluation of Geothermal Prospects in The Patuha Field Based on Derivative Analysis and 3D Inversion of Gravity Anomaly

Main Article Content

Soraya Tiana Dewi
Muh Sarkowi
Rahmat Catur Wibowo

Abstract

The Patuha geothermal field has the potential to be developed as a source of energy for power generation. This study was conducted to evaluate the Patuha geothermal system based on Global Gravity Model Plus Gravity data. The study refers to the Bouguer Anomaly value, which is the difference between the observed gravity value (gobs) and the theoretical gravitational value (gn), or the sum of corrections applied to the gravity measurement. This difference reflects variations in mass density between the survey area and its surroundings, occurring in both lateral and vertical directions. Derivative analysis and 3D inversion of gravity anomalies are used to identify the presence of faults, reservoir prospects, cap rocks, and heat sources. The Complete Bouguer Anomaly map displays decreasing values from southwest to northeast. The high anomaly coincides with Mount Patuha, indicating that this feature may become the heat source. The 3D inversion of the gravity anomaly yielded a density range of 2 g/cm³ to 3 g/cm³. The reservoir prospect is controlled by the graben structure and is located in the Ciwidey Crater. It has a density of 2.5 g/cc, with an area of ​​130 km2, located at a depth of 2200 meters above MSL to 700 meters below MSL. Cap rock crosses along the Cibuni Crater, White Crater, and Ciwidey Crater with a density of 2.66 g/cc at a depth of 2300 meters to 800 meters above MSL. The heat source is shallow and originates from Mount Patuha, with a density of 3 g/cc at a depth of 1500 meters above MSL and 4600 meters below MSL.

Article Details

How to Cite
Dewi, S. T., Sarkowi, M., & Wibowo, R. C. (2025). Evaluation of Geothermal Prospects in The Patuha Field Based on Derivative Analysis and 3D Inversion of Gravity Anomaly. EKSPLORIUM, 46(1), 27–46. https://doi.org/10.55981/eksplorium.2025.11327
Section
Articles

References

[1] S. Broto and T. T. Putranto, “Aplikasi Metode Geomagnet dalam Eksplorasi Panasbumi,” Teknik, vol. 32, no. 1, pp. 79–87, 2011, doi: 10.14710/teknik.v32i1.1687.

[2] S. J. Zarrouk and K. McLean, Geothermal Well Test Analysis, 2019, Elsevier, doi: 10.1016/c2017-0-02723-4.

[3] M. F. Khasmadin and U. Harmoko, "Kajian Potensi dan Pemanfaatan Energi Panas Bumi di Wilayah Kerja Panas Bumi Patuha Ciwidey," J. Energi Baru dan Terbarukan, vol. 2, no. 2, pp. 101–113, 2021, doi: 10.14710/jebt.2021.11187.

[4] B. Suranta, V. Wenov, A. Sofyan, and H. Aka, "Estimasi Potensi Sumber Daya Panasbumi Menggunakan Metode Volumetrik Di Lapangan Patuha," Indones. J. Energy, vol. 1, no. December 2020, pp. 37–44, 2020.

[5] W. M. Telford, L. P. Geldart, and R. E. Sherrif, Applied Geophysics, London: Cambridge University Press, 1990.

[6] M. Sarkowi and R. C. Wibowo, "Reservoir Identification of Bac-Man Geothermal Field Based on Gravity Anomaly Analysis and Modeling," J. Appl. Sci. Eng., vol. 25, no. 2, pp. 329–338, 2022, doi: 10.6180/jase.202204_25(2). 0009.

[7] M. Sarkowi, R. C. Wibowo, R. F. Sawitri, and B. S. Mulyanto, "Wai Selabung Geothermal Reservoir Analysis Based on Gravity Method," J. Ilm. Pendidik. Fis. Al-Biruni, vol. 10, no. 2, pp. 211–229, 2021, doi: 10.24042/jipfalbiruni.v10i2. 9705.

[8] C. Hirt, S. Claessens, T. Fecher, M. Kuhn, R. Pail, and M. Rexer, "New Ultrahigh-Resolution Picture of Earth's Gravity Field," Geophys. Res. Lett., vol. 40, no. 16, pp. 4279–4283, 2013, doi: 10.1002/grl.50838.

[9] B. Sudrajad, “Pemodelan Struktur Bawah Permukaan Wilayah Kabupaten Nabire di Bagian Utara Leher Burung Pulau Papua Menggunakan Pemodelan Inversi Tiga Dimensi (3D) dan Analisis Horisontal Derivatif Berdasarkan Data Anomali Gravitasi GGMplus,” Tesis, Universitas Gadjah Mada., 2018.

[10] S. A. Pratama, Y. Daud, F. Fahmi, and C. A. Darusman, "Integrated Analysis of Magnetotelluric and Gravity Data for Delineating Reservoir Zone at Patuha Geothermal Field, West Java," Proc. Indones. Int. Geotherm. Conv. Exhib., pp. 1–7, 2015.

[11] I. Setiadi, A. Diyanti and N. D. Ardi, “Interpretasi Struktur Geologi Bawah Permukaan Daerah Leuwidamar Berdasarkan Analisis Spektral Data Gaya Berat,” Jurnal Geologi dan Sumberdaya Mineral, vol. 15, no. 4, pp. 205–214, 2014, doi: 10.33332/jgsm.geologi.v15i4.59.

[12] S. F. Hidayat, “Penyelidikan Gaya Berat Untuk Pemetaan Struktur Bawah Permukaan di Daerah Karanganyar Bagian Barat,” Universitas Sebelas Maret, 2011.

[13] N. A. Rahima, “Studi Pemodelan Struktur Bawah Permukaan menggunakan Metode Gaya Berat di Daerah panas Bumi Kec. Lasusua kab. Kolaka Utara,” UIN Alauddin Makassar, 2020.

[14] Badan Informasi Geospasial, “Shapefile Geologi Seluruh Indonesia.” [Online]. Available: https://www.indonesia-geospasial.com.

[15] T. Purwantoro, A. Rachman, and M. Silaban, “Potensi dan rencana pengembangan lapangan panas bumi Patuha Jawa Barat,” Proceedings of the 39th IAGI Annu. Conv. Exhib., 2010.

[16] W. Hamilton, Tectonics of the Indonesian Region, United States Geol. Surv. Prof. Pap., no. 1078, 1979.

[17] Badan Informasi Geospasial, “DEMNAS.” [Online]. Available: https://tanahair.indonesia.go. id.

[18] GeoMap, “Lembar Geologi Jawa Barat.” [Online]. Available: https://geologi.esdm.go.id/geomap/ pages/preview/peta-geologi-lembar-cianjur-jawa.

[19] N. M. Saptaji, Teknik Geothermal, Bandung: ITB Press, 2020.

[20] E. Layman and S. Soemarinda, "The Patuha Vapor-Dominated Resource West Java, Indonesia," Proc. 28th Work. Geotherm. Reserv. Eng. (p. SGP-TR173), 2003.

[21] A. Ashat and H. B. Pratama, "Application of Experimental Design in Geothermal Resources Assessment of Ciwidey-Patuha, West Java, Indonesia," IOP Conf. Ser. Eart. Environ. Sci., vol. 103, 2017, doi: 10.1088/1755-1315/103/1/012009.

[22] Martodjojo, Evolusi Cekungan Bogor, Bandung: Institut Teknologi Bandung, 1984.

[23] M. Nursalam, “Analisis Sesar dengan Data Gayaberat Menggunakan Metode SVD (Second Vertical Derivative) di Daerah Panas Bumi ‘MN,’” Universitas Hasanuddin, 2021.

[24] P. Sumintadireja, D. Dahrin, and H. Grandis, "A Note on the Use of the Second Vertical Derivative (SVD) of Gravity Data with Reference to Indonesian Cases," J. Eng. Technol. Sci, vol. 50, pp. 127–139, 2018, doi: 10.5614/j.eng.technol.sci. 2018.50.1.9.

[25] R. G. Henderson and I. Zietz, "The Computation of Second Vertical Derivative of Geomagnetic Fields," Geophys. J., vol. 14, no. 4, pp. 508-516, 1949, doi: 10.1190/1.1437558.

[26] T. A. Elkins, "The Second Derivative Method of Gravity Interpretation," Geophys. J., vol. 16, no. 1, pp. 29-50, 1951, doi: 10.1190/1.1437648.

[27] O. Rosenbach, "A Contribution to The Computation of The Second Derivative From Gravity Data," Geophys. J., vol. 18, pp. 894-907, 1953, doi: 10.1190/1.1437943.

[28] M. Sarkowi, “Identifikasi Struktur Daerah Panas Bumi Ulubelu Berdasarkan Analisa Data SVD Anomali Bouguer,” J. Sains MIPA, vol. 16, no. 2, 2010, [Online]. Available: http://repository.lppm. unila.ac.id/id/eprint/22328.

[29] R. Blakely, Potential Theory in Gravity and Magnetic Applications, Cambridge University Press, 1996.

[30] B. Oskooi and S. M. Ansari, "Application of Magnetotelluric Method in Exploration of Geothermal Reservoirs with an Example from Iceland," J. Earth Sp. Phys., vol. 37, no. 4, pp. 93-106, 2012, doi: 10.22059/jesphys.2012.24304.

[31] P. Soupios, S. Kaka, P. Kirmizakis, and M. Tranos, "Characterizing and Monitoring an Oil/Geothermal Reservoir using Non-seismic (Integrated CSEM, Gravity Surveys and Microseismic Surveys) Methods," College of Petroleum Engineering & Geoscience, King Fahd University of Petroleum & Minerals, [Online]. Available: cpg-webmaster@kfupm.edu.sa, [Accessed: Jul. 17, 2025].

[32] C. Iskandar and Y. Daud, "The Correlation Between 3-D Magnetotelluric Inversion Model with Drilling Data in Patuha Geothermal Field," Bul. Sumber Daya Geol., vol. 17, no. 1, pp. 51–64, 2022, doi: 10.47599/bsdg.v17i1.328.