Hydrogeology and Groundwater Potential in The Sirimau District, Ambon City, Maluku Province

Main Article Content

Michelle Theodora Matrutty
Micky Kololu
Resti Limehuwey
Ananta Purwoarminta
Yuniarti Ulfa
Stevandrus Nalendra Jati
Deny Juanda Puradimaja

Abstract

The demand for clean water in Sirimau District is the highest among all districts in Ambon City, with a total of 14.6 million liters per day for 146,453 people. Moreover, the demand for clean water is increasing with population growth. Therefore, research on hydrogeology and groundwater potential is necessary. The study aims to analyze the discharge and quality of groundwater. The methods used include field surveys, geoelectric measurements, and the analysis of physical and chemical water parameters. The geology of Sirimau district can be divided into five units: Kanikeh Formation, Ultramafic Rock, Ambon Volcanic Rock, Coral Limestone, and Alluvium. Unconfined aquifers are identified in three geological units: the Ambon Volcanic Rock, Alluvium and Coral Limestone, while confined aquifers are in the Ultramafic Rock and the Kanikeh Formation. The water facies are calcium magnesium bicarbonate and sodium-potassium chloride sulfate facies. The groundwater flow in Sirimau District has a northwest flow direction with an average hydraulic gradient of 0.0104. The groundwater discharge in the unconfined aquifer of the Ambon Volcanic Rock is 30 l/s, which is classified as a large discharge. The water quality from physical parameters does not exceed the maximum limit except for three sampling points. In contrast, the chemical content mostly does not exceed the maximum limit except at one drilled well location. Three springs develop due to fractures, while another occurs due to contact.

Article Details

How to Cite
Matrutty, M. T., Kololu, M., Limehuwey, R., Purwoarminta, A., Ulfa, Y., Jati, S. N., & Puradimaja, D. J. (2024). Hydrogeology and Groundwater Potential in The Sirimau District, Ambon City, Maluku Province. EKSPLORIUM, 45(2), 77–90. https://doi.org/10.55981/eksplorium.2024.7050
Section
Articles

References

[1] B. R. Scanlon, S. Fakhreddine, A. Rateb, I. de Graaf, J. Famiglietti, T. Gleeson R. Q. Grafton, E. Jobbagy, S. Kebede, S. R. Kolusu, L. F. Konikow, D. Long, M. Mekonnen, H. M. Schmied, A. Mukherjee, A. MacDonald, R.C. Reedy, M. Shamsudduha, C. T. Simmons, A. Sun, R. G. Taylor, K. G. Villholth, C. J. Vörösmarty, and C. Zheng, “Global Water Resources and The Role of Groundwater in a Resilient Water Future,” Nature Reviews Earth & Environment, vol. 4, no. 2, pp. 87–101, 2023, doi: 10.1038/s43017-022-00378-6

[2] H. Effendi, Telaah Kualitas Air Bagi Pengelolaan Sumber Daya dan Lingkungan Perairan, Yogyakarta: Kanisius, 2003.

[3] Badan Pusat Statistik Kota Ambon, Kota Ambon Dalam Angka 2022. Ambon: Badan Pusat Statistik Kota Ambon, 2022.

[4] M. M. Aponno and F. Nurrochmad, “Kajian Pengelolaan Sumberdaya Air Untuk Pemenuhan Kebutuhan Air Bersih Daerah Konsesi PT. DreAm Sukses Airindo Kota Ambon Propinsi Maluku,” Universitas Gadjah Mada, Ambon, 2013.

[5] B. M. Laka, S. Uca, and Amal, “Perubahan Penggunaan Lahan di Kecamatan Sirimau Kota Ambon,” Jurnal Geocelebes, vol. 1, no. 2, pp. 43–52, 2017, doi: 10.20956/geocelebes.v1i2.2165.

[6] R. A. Barkey, M. F. Mappiasse, and M. Nursaputra, “Model of Climate and Land-Use Changes Impact on Water Security in Ambon City, Indonesia,” Geoplanning Journal of Geomatics and Planning, vol. 4, no. 1, pp. 97–108 2017, doi: 10.14710/geoplanning.4.1.97-108.

[7] N. Akhtar, M. I. S. Ishak, S. A. Bhawani, and K. Umar, “Various Natural and Anthropogenic Factors Responsible for Water Quality Degradation: A Review,” Water, vol. 13, no. 19, pp. 1–35, 2021, doi: 10.3390/w13192660.

[8] H. Li, X. Yu, W. Zhang, and Y. Huan, “Risk Assessment of Groundwater Organic Pollution Using Hazard, Intrinsic Vulnerability, and Groundwater Value, Suzhou City in China,” Expo. Health, pp. 99–115, vol. 10, 2018, doi: 10.1007/s12403-017-0248-8.

[9] M. Salehi, “Global Water Shortage and Potable Water Safety; Today's Concern and Tomorrow's Crisis, Environment International, vol. 158, pp. 1–7, 2022, doi: 10.1016/j.envint.2021.106936.

[10] U. P. E. Jamaluddin, “Identification of Subsurface Layer with Wenner-Schlumberger Arrays,” in Global Colloquium on GeoSciences and Engineering 2017 IOP Conf. Series: Earth and Environmental Science, IOP Publishing, vol. 118, pp. 1-6, 2017, doi: 10.1088/1755-1315/118/1/012006.

[11] P. A. Domenico and F. W. Schwartz, Physical and Chemical Hydrogeology. New York: John Wiley & Sons, 1990.

[12] D. K. Todd, Groundwater Hydrology. New York: John Wiley & Sons, 1980.

[13] Zeffitni, “Agihan Spasial Potensi Air tanah Berdasarkan Kriteria Kualitas di Cekungan Air tanah Palu Provinsi Sulawesi Tengah,” Mektek, vol. 3, 2010.

[14] Ministry of Health, “Regulations on the Implementation of Government Regulation No. 66/2014 on Environmental Health,” Ministry of Health, Jakarta, Regulation No. 3, 2023.

[15] L. V. Wilcox, Classification and Use of Irrigation Waters. U.S. Department of Agriculture, 1955.

[16] Ministry of Health, “Regulations on Water Quality Requirements and Monitoring”, Ministry of Health, Jakarta, Regulation No. 32, 2017.

[17] S. Tjokrosapoetro, E. Rusmana, and Suharsono, Geological Map of The Ambon Sheet, Maluku, Geological Research and Development Centre, Bandung, 1993.

[18] C. Sukrisno, Hydrogeological Map of West Seram Island, Geological Agency, Bandung, 1993.

[19] T. T. Putranto, and R. S. Ginting, “Determining Groundwater Facies and Water Quality Index in Tanah Bumbu Regency/South Borneo Indonesia. E3S Web of Conferences, vol. 202, pp. 1-10, 2020, doi: 10.1051/e3sconf/202020204007.

[20] C. Sabarathinam, H. Bhandary, and A. Ali, “Strategies to Characterize The Geochemical Interrelationship Between Coastal Saline Groundwater and Seawater,” Environ. Earth Sci., vol. 80, pp. 1–23, 2021, doi: 10.1007/s12665-021-09924-9.