Facies and Depositional Environment Analysis of Limestone in Citeureup Area, West Java, Indonesia

Main Article Content

Rian Andriansyah
Rizky Syaputra
Nur Ikhsan Robbani
Kristian Nurwedi Tabri

Abstract

The Citeureup area in West Java Province hosts Middle Miocene limestone outcrops belonging to the Klapanunggal Formation, which has long been considered a promising source of raw material for Indonesia’s cement industry. Despite its economic significance, detailed sedimentological studies and facies characterization of this formation remain limited. This study aims to identify the dominant lithofacies and reconstruct depositional environments to understand the formation’s genesis and assess its resource potential. Thin-section petrographic analysis, enhanced with blue epoxy resin, was employed to identify porosity, fossil assemblages, and mineral composition. The investigation revealed three primary facies types: packstone, boundstone, and dolomitic grainstone. The packstone and dolomitic grainstone facies are interpreted to have formed in reef-flat settings, associated with shallow, high-energy marine conditions. The boundstone facies, in contrast, are linked to reef-crest environments subjected to more dynamic hydrodynamic regimes. These findings point to a depositional system characteristic of a carbonate platform shaped by variable energy conditions. The presence of abundant skeletal grains, well-developed porosity, and mature mineralogical features indicates the limestone’s high potential as a quality raw material for cement production. Beyond its industrial relevance, the study enhances sedimentological insights into the Klapanunggal Formation and provides a scientific basis for informed resource evaluation and sustainable exploitation strategies in similar carbonate settings.

Article Details

How to Cite
Andriansyah, R., Syaputra, R., Robbani, N. I., & Tabri, K. N. (2024). Facies and Depositional Environment Analysis of Limestone in Citeureup Area, West Java, Indonesia. EKSPLORIUM, 45(2), 99–110. https://doi.org/10.55981/eksplorium.2024.6953
Section
Articles

References

[1] A. M. Qaid, N. Alqubati, and A. M. Al-Hawbani, “Physical and Geochemical Assessment of Limestone of Amran Group in Arhab Area-North Sana’a for Industrial Uses,” Tech. Biochem., vol. 2, no. 2, pp. 28–38, Jun. 2021,. [Online]. Available: https://techniumscience.com/index. php/biochemmed/article/view/3617. [Accessed: May 9, 2025]

[2] S. U. Rehman, K. Mehmood, M. F. Ullah, N. Ahsan, F. Rehman, T. Mahmood, and M. Ahmed, “Sedimentology of Marl and Marly Limestone Sequence of Upper Cretaceous Kawagarh Formation from Northern Kalachitta Range, Attock Hazara Fold and Thrust Belt, Pakistan,” Open J. Geol., vol. 9, no. 1, pp. 1–14, 2019, doi: 10.4236/OJG.2019.91001.

[3] D. Smrzka, J. Zwicker, W. Bach, D. Feng, T. Himmler, D. Chen, and J. Peckmann, “The Behavior of Trace Elements in Seawater, Sedimentary Pore Water, and Their Incorporation into Carbonate Minerals: A Review,” Facies, vol. 65, no. 4, 2019, doi: 10.1007/S10347-019-0581-4.

[4] M. Gusman, B. Muchtar, N. Syah, M. D. Akbar, and A. V. Deni, “Estimations of Limestone Resources using Three Dimension Block Kriging Method, a Case Study: Limestone Sediment at PT Semen Padang,” IOP Conf. Ser. Earth Environ. Sci., vol. 314, no. 1, 2019, doi: 10.1088/1755-1315/314/1/012069.

[5] T. Syahrulyati, T. Syahrulyati, S. Irianto, and Y. Suhendi, “Reserve Potential Sandy Clay as a Raw Materials Cement Village Hambalang, County Citeureup District Bogor Province Jawabarat - Indonesia,” Int. J. Eng. Technol., vol. 7, no. 3.20, pp. 398–401, 2018, doi: 10.14419/ ijet.v7i3.20.20580.

[6] M. F. Qodri and R. A. Sopamena, “Mineralogical and Geochemical Characterization of The Wonosari Formation Limestone at Gunungkidul Indonesia as Preliminary Investigation of Portland Cement Raw Material,” IOP Conf. Ser. Earth Environ. Sci., vol. 1151, no. 1, 2023, doi: 10.1088/1755-1315/1151/1/012026.

[7] N. Mohamad, K. Muthusamy, R. Embong, A. Kusbiantoro, and M. H. Hashim, “Environmental Impact of Cement Production and Solutions: a Review,” Mater. Today Proc., vol. 48, no. March, pp. 741–746, 2021, doi: 10.1016/ j.matpr.2021.02.212.

[8] A. A. Shehata, A. A. Kassem, H. L. Brooks, V. Zuchuat, and A. E. Radwan, “Facies Analysis and Sequence-Stratigraphic Control on Reservoir Architecture: Example from Mixed Carbonate/Siliciclastic Sediments of Raha Formation, Gulf of Suez, Egypt,” Mar. Pet. Geol., vol. 131, p. 105160, 2021, doi: 10.1016/ J.MARPETGEO.2021.105160.

[9] F. A. Yosef, L. Jum’a, and M. Alatoom, “Identifying and Categorizing Sustainable Supply Chain Practices Based on Triple Bottom Line Dimensions: Evaluation of Practice Implementation in the Cement Industry,” Sustain., vol. 15, no. 9, 2023, doi: 10.3390/su15097323.

[10] S. Barbhuiya, F. Kanavaris, B. B. Das, and M. Idrees, “Decarbonizing Cement and Concrete Production: Strategies, Challenges and Pathways for Sustainable Development,” J. Build. Eng., vol. 86, p. 108861, 2024, doi: 10.1016/ J.JOBE.2024.108861.

[11] S. A. Kasim, M. Suhaili Ismail, N. Ahmed, and A. Rashid, “Facies Analysis, Petrography and Textural Characteristics of the Onshore Paleogene-Neogene Lawin Basin, Perak, Peninsular Malaysia: Insights into Palaeodepositional Environment and Provenance,” J. Asian Earth Sci. X, vol. 9, no. April, p. 100150, 2023, doi: 10.1016/ j.jaesx.2023.100150.

[12] Abdurrokhim, “Carbonate Reef of the Klapanunggal Formation in the Bogor Trough, West Java,” J. Geol. Sci. Appl. Geol., vol. 2, no. 1, pp. 33–43, 2017, doi: 10.24198/ gsag.v2i1.13422.

[13] A. J. Campos Magalhães, D. G. Carnier Fragoso, G. P. R. Gabaglia, G. J. S. Terra, A. H. de Melo, P. R. O. Andrade, F. Guadagnin, and F. P. Lima-Filho, “Sequence Stratigraphy of Clastic and Carbonate Successions: Applications for Exploration and Production of Natural Resources,” Brazilian J. Geol., vol. 51, no. 4, p. e20210014, 2021, doi: 10.1590/2317-4889202120210014.

[14] M. Saba, L. N. Hernandez-Romero, J. Lizarazo-Marriaga, and E. E. Quiñones-Bolaños, “Petrographic of Limestone Cultural Heritage as the Basis of a Methodology to Rock Replacement and Masonry Assessment: Cartagena De Indias Case of Study,” Case Stud. Constr. Mater., vol. 11, p. e00281, 2019, doi: 10.1016/ J.CSCM.2019.E00281.

[15] I. Yousef, V. P Morozov, A. N Kolchugin, V. Sudakov, I. Idrisov, and A. Leontev, “Microfacies Analysis and Depositional Environment of the Upper Devonian Dankovo-Lebedyansky Sediments, Tatarstan, Volga-Ural Basin, Russia,” Pet. Res., vol. 8, no. 2, pp. 244–255, 2023, doi: 10.1016/J.PTLRS.2022.07.003.

[16] M. H. Adabi, M. A. Salehi, and A. Ghabeishavi, “Depositional Environment, Sequence Stratigraphy and Geochemistry of Lower Cretaceous Carbonates (Fahliyan Formation), South-West Iran,” J. Asian Earth Sci., vol. 39, no. 3, pp. 148–160, 2010, doi: 10.1016/ J.JSEAES.2010.03.011.

[17] J. E. Embry, A.F. and Klovan, “A Late Devonian Reef Tract on Northeastern Banks Island,” Canadian Petroleum Geology. [Online]. Available: https://www.scirp.org/reference/ referencespapers?referenceid=1881550. [Accessed: May 9, 2025]

[18] C. G. S. C. Kendall and P. Flood, “Classification of Carbonates,” Encycl. Earth Sci. Ser., vol. Part 2, pp. 193–198, 2011, doi: 10.1007/978-90-481-2639-2_269.

[19] J. C. Laya, J. Sulaica, C. P. Teoh, F. Whitaker, T. Gabellone, M. E. Tucker, P. Tesch, B. Miller, K. Prince, and I. Izaguirre, “Controls on Neogene Carbonate Facies and Stratigraphic Architecture of an Isolated Carbonate Platform – The Caribbean Island of Bonaire,” Mar. Pet. Geol., vol. 94, pp. 1–18, 2018, doi: 10.1016/J.MARPETGEO. 2018.03.031.

[20] R. J. Dunham, “Classification of Carbonate Rocks According to Depositional Texture. In Ham, W.E., Ed., Classification of Carbonate Rocks.,” AAPG, Tulsa, [Online]. Available: https://www.scirp.org/ reference/referencespapers?referenceid=1676736. [Accessed: May 9, 2025].

[21] P. A. Scholle, N. P. James, and J. F. Read, “Carbonate Sedimentology and Petrology,” p. 160, 1989.

[22] M. T. Dorsey, T. K. Rockwell, G. H. Girty, G. A. Ostermeijer, J. Browning, T. M. Mitchell, and J. M. Fletcher, “Evidence of Hydrothermal Fluid Circulation Driving Elemental Mass Redistribution in an Active Fault Zone,” J. Struct. Geol., vol. 144, p. 104269, 2021, doi: 10.1016/ J.JSG.2020.104269.

[23] A. J. C. Magalhães, A. H. Melo, G. J. S. Terra, D. G. C. Fragoso, U. M. Soares, and F. P. Lima-Filho, “High-Resolution Sequence Stratigraphy of The Ponta Do Mel Formation, Potiguar Basin, Brazil: Insights into Shallow-Marine Carbonate Reservoir Zonation and Characterization,” Pet. Res., 2024, doi: 10.1016/J.PTLRS. 2024.12.002.

[24] E. Merino and A. Banerjee, “Terra Rossa Genesis, Implications for Karst, and Eolian Dust: a Geodynamic Thread,” J. Geol., vol. 116, no. 1, pp. 62–75, 2008, doi: 10.1086/524675.

[25] I. A. Okewale, H. Grobler, and A. F. Mulaba-Bafubiandi, “Assessment of Carbonate Rocks for Engineering Applications Considering Mineralogical, Geochemical and Geotechnical Attributes,” Innov. Infrastruct. Solut., vol. 9, no. 10, 2024, doi: 10.1007/S41062-024-01701-4.