Lithological Discrimination Based on Radiometric Data: Case Study of Rabau Sector, West Kalimantan and Salumati Sector, West Sulawesi

Main Article Content

Muhammad Wira Maulana
Roni Cahya Ciputra
Iskandarsyah Iskandarsyah
Tyto Baskara Adimedha
I Gde Sukadana
Frederikus Dian Indrastomo
Heri Syaeful
Fadiah Pratiwi
Yoshi Rachael
Faneza Nur Mardania
Dhatu Kamajati
Putri Rahmawati
Mirna Berliana Garwan

Abstract

This study evaluates the applicability of radiometric methods for lithological discrimination in tropical environments, with a focus on two uranium exploration sites in Indonesia: the Rabau Sector in West Kalimantan and the Salumati Sector in West Sulawesi. These locations were selected to represent various lithologies within the uranium exploration program. The aim is to determine whether gamma-ray spectrometry, commonly effective in arid environments, can also delineate lithological boundaries and alteration zones under conditions of intense weathering and dense vegetation cover of tropical area. Ground-based radiometric data were collected using the RS-125 gamma spectrometer to record the concentration of potassium (K), equivalent uranium (eU), and equivalent thorium (eTh). Data processing involved anisotropy analysis, geostatistical interpolation using ordinary kriging, ternary RGB composite mapping, and delineation of radiometric domains. The resulting radiometric maps were then qualitatively compared with existing geological maps for validation. The results show that radiometric signatures, particularly eTh and eU, can effectively distinguish rock units with differing genesis or degrees of alteration, despite tropical conditions. In Rabau, where lithologies share a common protolith, elevated eU concentrations correspond to hornfels, while metatuff and metasiltstone remain indistinguishable, indicating the influence of thermal metamorphism on radiometric responses. In Salumati, eTh and eU zoning within phonolite suggest compositional variability or differential alteration, and elevated eU in altered tuff reflects uranium remobilization in smectite-rich zones. These findings demonstrate that, despite the challenges posed by tropical climates, radiometric mapping remains a viable tool for lithological discrimination and early-stage uranium exploration in Indonesia. This work extends the application of radiometric techniques beyond arid environments and underscores the need to integrate radiometric interpretation with genetic, provenance, and alteration context in tropical geological mapping.

Article Details

How to Cite
Maulana, M. W., Ciputra, R. C., Iskandarsyah, I., Adimedha, T. B., Sukadana, I. G., Indrastomo, F. D., … Garwan, M. B. (2025). Lithological Discrimination Based on Radiometric Data: Case Study of Rabau Sector, West Kalimantan and Salumati Sector, West Sulawesi . EKSPLORIUM, 46(1), 1–14. https://doi.org/10.55981/eksplorium.2025.11475
Section
Articles
Author Biography

Roni Cahya Ciputra, Research Center for Nuclear Material and Radioactive Waste Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN)

Junior Researcher at Nuclear Geology Technology Research Group

References

[1] M. A. El-Sadek, "Radiospectrometric and magnetic signatures of a gold mine in Egypt," J. Appl. Geophys., vol. 67, no. 1, pp. 34–43, 2009, doi: 10.1016/j.jappgeo.2008.08.012.

[2] S. K. Atta, "Mapping subsurface geological structures in the Birimian Supergroup, Ghana using airborne magnetic and radiometric data: Implications for gold exploration," J. African Earth Sci., vol. 205, no. June, p. 105003, 2023, doi: 10.1016/j.jafrearsci.2023.105003.

[3] K. O. Olomo, S. Bayode, O. A. Alagbe, G. M. Olayanju, and O. K. Olaleye, "Multifaceted investigation of porphyry Cu-Au-Mo deposit in hydrothermal alteration zones within the gold field of Ilesha Schist Belt," Malaysian J. Geosci., vol. 6, no. 2, pp. 45–53, 2022, doi: 10.26480/mjg.02.2022.45.53.

[4] R. B. K. Shives, B. W. Charbonneau, and K. L. Ford, "The detection of potassic alteration by gamma-ray spectrometry - Recognition of alteration related to mineralization," Geophysics, vol. 65, no. 6, pp. 2001–2011, 2000, doi: 10.1190/1.1444884.

[5] M. A. El-Sadek and M. I. Mousa, "Integration of space images and airborne radiometric data for discrimination of radioactive mineralizations at Wadi Araba area, North Eastern Desert, Egypt," Egypt. J. Remote Sens. Sp. Sci., vol. 13, no. 1, pp. 11–19, 2010, doi: 10.1016/j.ejrs.2010.07.002.

[6] J. Aisabokhae and I. Osazuwa, "Radiometric mapping and spectral based classification of rocks using remote sensing data analysis: The Precambrian basement complex, NW Nigeria," Remote Sens. Appl. Soc. Environ., vol. 21, no. November 2020, 2021, doi: 10.1016/j.rsase.2020.100447.

[7] P. Chiozzi, V. Pasquale, and M. Verdoya, "Radiometric survey for exploration of hydrothermal alteration in a volcanic area," J. Geochemical Explor., vol. 93, no. 1, pp. 13–20, 2007, doi: 10.1016/j.gexplo.2006.07.002.

[8] A. A. Azzazy, A. A. Elhusseiny, and S. Zamzam, "Integrated radioactive mineralization modeling using analytical hierarchy process for airborne radiometric and remote sensing data, East Wadi Qena (EWQ), Eastern Desert, Egypt," J. Appl. Geophys., vol. 206, no. May, p. 104805, 2022, doi: 10.1016/j.jappgeo.2022.104805.

[9] S. O. Elkhateeb and M. A. G. Abdellatif, "Delineation potential gold mineralization zones in a part of Central Eastern Desert, Egypt using Airborne Magnetic and Radiometric data," NRIAG J. Astron. Geophys., vol. 7, no. 2, pp. 361–376, 2018, doi: 10.1016/j.nrjag.2018.05.010.

[10] D. Richarte, S. Correa-Otto, F. Lince Klinger, and M. Giménez, "Geophysical characterization of a low sulfidation epithermal gold and silver deposit, Mendoza, Argentina," J. South Am. Earth Sci., vol. 123, no. November 2022, 2023, doi: 10.1016/j.jsames.2023.104227.

[11] H. Syaeful, R. C. Ciputra, T. B. Adimedha, A. Sumaryanto, I. G. Sukadana, F. D. Indrastomo, F. Pratiwi, Sucipta, H. A. Pratama, D. Mustika, K. S. Widana, S. Widodo, M. Burhannudinnur, I. Syafri, and B. Sutopo, "Radiometric Signatures of Gold Mineralization Zone in Pongkor, West Java, Indonesia: A Baseline for Radiometric Mapping Application on Low-Sulfidation Epithermal Deposit," Resources, vol. 13, no. 1, 2024, doi: 10.3390/resources13010002.

[12] H. Syaeful, I. G. Sukadana, and A. Sumaryanto, "Radiometric mapping for Naturally Occurring Radioactive Materials (NORM) assessment in Mamuju, West Sulawesi," Atom Indones., vol. 40, no. 1, pp. 33–39, 2014, doi: 10.17146/aij.2014.263.

[13] I. Gde Sukadana, I. Wayan Warmada, A. Harijoko, F. D. Indrastomo, and H. Syaeful, "The Application of Geostatistical Analysis on Radiometric Mapping Data to Recognized the Uranium and Thorium Anomaly in West Sulawesi, Indonesia.," IOP Conf. Ser. Earth Environ. Sci., vol. 819, no. 1, 2021, doi: 10.1088/1755-1315/819/1/012030.

[14] Ngadenin, H. Syaeful, K. S. Widana, and M. Nurdin, “Potensi Thorium dan Uranium di Kabupaten Bangka Barat,” Eksplorium, vol. 35, no. 2, pp. 69–84, 2014, [Online]. Available: https://ejournal.brin.go.id/eksplorium/article/view/8083/6196.

[15] Ngadenin, R. Fauzi, H. Syaeful, K. S. Widana, I. G. Sukadana, F. D. Indrastomo, and Widodo, "Uncovering the Distribution Zones of Uranium and Thorium in Bangka Island," Atom Indones., vol. 49, no. 3, pp. 177–184, 2023, doi: 10.55981/aij.2023.1288.

[16] H. Syaeful, I. G. Sukadana, Y. S. B. Susilo, F. D. Indrastomo, A. G. Muhammad, and Ngadenin, "Uranium Exploration, Deposit and Resources: The Key of Nuclear power plant development program in Indonesia," J. Phys. Conf. Ser., vol. 2048, no. 1, 2021, doi: 10.1088/1742-6596/2048/1/012003.

[17] H. T. Breitfeld, L. Davies, R. Hall, R. Armstrong, M. Foster, G. Lister, M. Thirwall, N. Grassineau, J. Hennig-Breitfeld, and M. W. A. van Hattum, "Mesozoic Paleo-Pacific Subduction Beneath SW Borneo: U-Pb Geochronology of the Schwaner Granitoids and the Pinoh Metamorphic Group," Front. Earth Sci., vol. 8, no. December, 2020, doi: 10.3389/feart.2020.568715.

[18] L. Davies, R. Hall, and R. Armstrong, "Cretaceous Crust in South West Borneo: Petrological, Geochemical, and Geochronological Constraints from the Schwaner Mountains," Proceedings of Indonesian Petroleum Association, 2014, [Online]. Available: https://archives.datapages.com/data/ipa_pdf/2014/IPA14-G-025. htm.

[19] J. Hennig, H. T. Breitfeld, R. Hall, and A. M. S. Nugraha, "The Mesozoic Tectono-Magmatic Evolution at the Paleo-Pacific Subduction Zone in West Borneo," Gondwana Res., vol. 48, pp. 292–310, 2017, doi: 10.1016/j.gr.2017.05.001.

[20] R. Ciputra, S. Suharji, D. Kamajati, and H. Syaeful, "Application of geostatistics to complete uranium resources estimation of Rabau Hulu Sector, Kalan, West Kalimantan," E3S Web Conf., vol. 200, 2020, doi: 10.1051/e3sconf/202020006001.

[21] B. Sutopo, R. Witjahjati, and Y. Wusana, “Sintesis Geologi dan Mineralisasi Uranium Sektor Rabau Hulu, Kalimantan Barat,” in Internal Report of PPBGN BATAN, Jakarta, 2005.

[22] Pusat Pengembangan Bahan Galian Nuklir BATAN, Prospeksi Super Detil Sektor Rabau Kallimantan Barat Tahun 1985/1986 (Internal Report), Jakarta, 1986.

[23] R. Witjahjati and H. Supalal, Perhitungan Sumber Daya Uranium di Daerah Rabau Hulu Kalimantan Barat, in: Internal Report of PPBGN BATAN, Jakarta, 1991.

[24] I. Rosianna, E. D. Nugraha, H. Syaeful, S. Putra, M. Hosoda, N. Akata, and S. Tokonami, "Natural radioactivity of laterite and volcanic rock sample for radioactive mineral exploration in Mamuju, Indonesia," Geosci., vol. 10, no. 9, pp. 1–13, 2020, doi: 10.3390/geosciences10090376.

[25] I. Rosianna, E. D. Nugraha, H Tazoe, H. Syaeful, A. G. Muhammad, I. G. Sukadana, F. D. Indrastomo, Ngadenin, F. Pratiwi, A. Sumaryanto, Sucipta, H. A. Pratama, D. Mustika, L. Nirwani, Nurokhim, Y. Omori, M. Hosoda, N. Akata, and S. Tokonami, "Uranium Isotope Characterization in Volcanic Deposits in a High Natural Background Radiation Area, Mamuju, Indonesia," Geosci., vol. 13, no. 12, pp. 1–13, 2023, doi: 10.3390/geosciences13120388.

[26] I. G. Sukadana, I. W. Warmada, F. Pratiwi, A. Harijoko, and T. B. Adimedha, "Elemental mapping for characterizing of thorium and Rare Earth Elements (REE) bearing minerals using µXRF," Atom Indones., vol. 48, no. 2, pp. 87–98, 2022, doi: 10.17146/aij.2022.1215.

[27] R. Hall, I. R. Cloke, S. Nur'aini, S. D. Puspita, S. J. Calvert, and C. F. Elders, "The North Makassar Straits: What lies beneath?," Pet. Geosci., vol. 15, no. 2, pp. 147–158, 2009, doi: 10.1144/1354-079309-829.

[28] S. Bergman, D. Q. Coffield, J. P. Talbot, and R. Garrard, "Tertiary Tectonic and magmatic evolution of western Sulawesi and the Makassar Strait, Indonesia: Evidence for a Miocene continent-continent collision," Geol. Soc. London Spec. Publ., vol. 106, pp. 391–429, 1996, doi: 10.1144/GSL.SP.1996.106.01.25.

[29] A. Guntoro, "The formation of the Makassar Strait and the separation between SE Kalimantan and SW Sulawesi," Journal of Asian Earth Sciences, vol. 17, no. 1-2, pp. 79–98, 1999, doi: 10.1016/S0743-9547(98)00037-3.

[30] W. A. Draniswari, S. I. T. Kusuma, T. B. Adimedha, and I. G. Sukadana, “Peran Kontaminasi Kerak pada Diferensiasi Magma Pembentuk Batuan Vulkanik Sungai Ampalas, Mamuju, Sulawesi Barat,” Eksplorium, vol. 41, no. 2, p. 73, 2020, doi: 10.17146/eksplorium.2020.41.2.6040.

[31] I. G. Sukadana, A. Harijoko, and L. D. Setidjadji, “Tataan Tektonika Batuan Gunung Api Di Komplek Adang, Kabupaten Mamuju, Propinsi Sulawesi Barat,” Eksplorium, vol. 36, no. 1, pp. 31–44, 2015, doi: 10.17146/eksplorium.2015.36.1.2771.

[32] F. D. Indrastomo, I. G. Sukadana, A. Saepuloh, A. H. Harsolumakso, and D. Kamajati, “Interpretasi Vulkanostratigrafi Daerah Mamuju Berdasarkan Analisis Citra Landsat-8,” Eksplorium, vol. 36, no. 2, p. 71, 2015, doi: 10.17146/eksplorium.2015.36.2.2772.

[33] H. E. Wulan, Studi Alterasi Hidrotermal dan Pengayaan Unsur Radioaktif di Daerah Takandeang, Tapalang, Mamuju, Sulawesi Barat, Universitas Gadjah Mada, 2020.

[34] C. A. Cambardella, T. B. Moorman, J. M. Novak, T. B. Parkin, D. L. Karlen, R. F. Turco, and A. E. Konopka, “Field‐Scale Variability of Soil Properties in Central Iowa Soils,” Soil Sci. Soc. Am. J., vol. 58, no. 5, pp. 1501–1511, 1994, doi: 10.2136/sssaj1994.03615995005800050033x.

[35] I. G. Sukadana, F. D. Indrastomo, and Ngadenin, “Sebaran Alterasi Batuan Berdasarkan Rasio Th/U di Tapalang, mamuju, Sulawesi Barat,” Ris.Geo.Tam, vol. 28, no. 2, pp. 141–155, 2018, doi: 10.14203/risetgeotam2018.v28.661.

[36] I. G. Sukadana, Sulaeman, H. Syaeful, F. D. Indrastomo, T. B. Adimedha, R. C. Ciputra, F. Pratiwi, D. Mustika, A. Sumaryanto, M. Burhannudinnur, R. A. P. Rijanti, P. Santosa, and S. Widodo, "High Field Strength Element (HFSE) and Rare Earth Element (REE) Enrichment in Laterite Deposit of High Background Natural Radiation Area (HBNRA) of Mamuju, West Sulawesi, Indonesia," Resources, vol. 14 no. 5: 84, pp. 1–23, 2025, doi: 10.3390/resources14050084.

[37] M. H. M. Yousef, "Delineation of radiometric anomalies and conductive zones using gamma-ray spectrometric and electromagnetic methods, east Gabal El-Urf area, Northern Eastern Desert, Egypt," Appl. Radiat. Isot., vol. 153, no. April, p. 108822, 2019, doi: 10.1016/j.apradiso.2019. 108822.

[38] Ngadenin, I. G. Sukadana, A.G. Muhammad, F. D. Indrastomo, I. Rosianna, R. C. Ciputra, T. B. Adimedha, F. Pratiwi, and Y. Rachael, “Radioactive Mineral Distribution on Tin Placer Deposits of Southeast Asia Tin Belt Granite in Bangka Island,” Eksplorium, vol. 44, no. 2, p. 49, 2024, doi: 10.55981/eksplorium.2023.6969.