Preliminary Study of Yttrium Extraction from Tin Slag Using Hydrochloric Acid

Main Article Content

Rachmat Fauzi Hidayat
Kurnia Trinopiawan
Mohammad Zaki Mubarok
Rommy Rommy
Riesna Prassanti
Aditya Widian Putra
Amalia Ekaputri Hidayat
Kurnia Setiawan Widana
Tri Purwanti
Roza Indra Laksmana
Triyono Basuki
Afiq Azfar Pratama
Suci Indryati

Abstract

Tin slag, a byproduct of tin smelting, comprises several important metals, including yttrium, tantalum, manganese, iron, aluminum, titanium, and others. As an element that is used a lot in advanced materials, the separation of Yttrium becomes one of the most important steps in rare earth elements extraction. By using the alkali fusion process and leaching method, yttrium in the tin slag has been successfully extracted. The tin slag was subjected to an alkali fusion treatment with sodium hydroxide at a temperature of 700 °C, and the frit was ground into several particle sizes of +100 to -325 mesh using a laboratory ball mill and mortar. The frit was then leached using hydrochloric acid, with four parameters used: temperature, acid concentration, particle size, and stirring speed. The extracted yttrium reached a percentage of up to 86.94% at a temperature of 80 °C, acid concentration of 2 M, particle size of -325 mesh, and stirring speed of 150 rpm.

Article Details

How to Cite
Hidayat, R. F., Trinopiawan, K., Mubarok, M. Z., Rommy, R., Prassanti, R., Putra, A. W., … Indryati, S. (2025). Preliminary Study of Yttrium Extraction from Tin Slag Using Hydrochloric Acid. EKSPLORIUM, 46(2), 83–92. https://doi.org/10.55981/eksplorium.2025.13299
Section
Articles

References

[1] A. C. O. Duarte and R. de S. Rodrigues, “Rare Earth Elements: What Are They, What Are Their Environmental Effects?,” Sustentare, vol. 4, no. 1, pp. 8–21, 2020, doi: https://doi.org/10.5892/st.v4i1.6154.

[2] B. Zhou, Z. Li, and C. Chen, “Global potential of rare earth resources and rare earth demand from clean technologies,” vol. 7, no. 11, p. 203 2017, MDPI AG. doi: https://doi.org/10.3390/min7110203.

[3] T. E. Amer, W. M. Abdella, G. M. A. Wahab, and E. M. El-Sheikh, “A suggested alternative procedure for processing of monazite mineral concentrate,” Int J Miner Process, vol. 125, pp. 106–111, 2013, doi: https://doi.org/10.1016/j.minpro.2013.10.004.

[4] N. Olukotun, A. R. M. Sam, N. H. A. Shukor Lim, M. Abdulkareem, I. Mallum, and O. Adebisi, “Mechanical properties of tin slag mortar,” Recycling, vol. 6, no. 2, p. 42, 2021, doi: https://doi.org/10.3390/recycling6020042.

[5] M. Gergoric, C. Ekberg, B. M. Steenari, and T. Retegan, “Separation of Heavy Rare-Earth Elements from Light Rare-Earth Elements Via Solvent Extraction from a Neodymium Magnet Leachate and the Effects of Diluents,” Journal of Sustainable Metallurgy, vol. 3, no. 3, pp. 601–610, Sep. 2017, doi: https://doi.org/10.1007/s40831-017-0117-5.

[6] T. Liu and J. Chen, “Extraction and separation of heavy rare earth elements: A review,” Dec. 01, 2021, Elsevier B.V. doi: https://doi.org/10.1016/j.seppur.2021.119263.

[7] D. LI, “A review on yttrium solvent extraction chemistry and separation process,” Chinese Society of Rare Earths., vol. 35 no. 2, pp. 107–119, 2017, doi: https://doi.org/10.1016/S1002-0721(17)60888-3.

[8] K. Szamałek, G. Konopka, K. Zglinicki, and B. Marciniak-Maliszewska, “Nowe potencjalne źRódło pierwiastków ziem rzadkich,” Gospodarka Surowcami Mineralnymi / Mineral Resources Management, vol. 29, no. 4, pp. 59–76, 2013, doi: https://doi.org/10.2478/gospo-2013-0041.

[9] J. U. Odo, W. C. Okafor, S. O. Ekpe, and C. C. Nwogbu, “Extraction of Niobium from Tin Slag,” International Journal of Scientific and Research Publications, vol. 4, no. 11, pp. 1–7, 2014.

[10] O. Firdaus and R. Kurniawan, “Penggunaan Limbah Peleburan Timah (Tin Slag) Sebagai Agregat Kasar Pada Campuran Hot Rolled Sheet- Wearing Course Untuk Perkerasan Jalan Raya,” FROPIL (Forum Profesional Teknik Sipil), vol. 2, no. 2, pp. 120–134, 2014, [Online]. Available: http://journal.ubb.ac.id/index.php/fropil/article/view/276.

[11] K. S. Widana, I. Rosianna, D. Kamajati, F. D. Indrastomo, Y. S. B. Susilo, and A. Sumaryanto, “Characterization of unconventional rare earth elements resources from Bangka monazite and tin slag,” AIP Conference Proceedings, vol. 2517, p. 020008, 2023. doi: https://doi.org/10.1063/ 5.0121551.

[12] I. Gaballah, E. Allain, M. C. Meyer-Joly, and K. Malau, “A possible method for the characterization of amorphous slags: Recovery of refractory metal oxides from tin slags,” Metallurgical Transactions B, vol. 23, no. 3, pp. 249–259, 1992, doi: https://doi.org/10.1007/BF02656280.

[13] W. Kartika, R. A. Majid, and D. Navanti, “Studi Pemanfataan Limbah Terak Timah 2 Bangka Sebagai Sumber Sekunder Unsur Skandium,” Jurnal Kajian Ilmiah, vol. 19, no. 1, pp. 8–16, 2019.

[14] C. Subramanian and A. K. Suri, “Recovery of niobium and tantalum from low grade tin slag-A hydrometallurgical approach,” Environmental and Waste Management, pp. 100–107, 1998, [Online]. Available: https://core.ac.uk/download/pdf/297712235.pdf.

[15] J. S. Judge, “A Study of the Dissolution of SiO[sub 2] in Acidic Fluoride Solutions,” J Electrochem Soc, vol. 118, no. 11, p. 1772, 1971, doi: https://doi.org/10.1149/1.2407835.

[16] N. Saleh, I. Rodliyah, and S. Rochani, “Eliminasi Senyawa Silika dari Terak Peleburan Timah Menggunakan Asam Fluoro-Silikat,” Teknologi Mineral dan Batubara, vol. 11, no. 4, pp. 107–117, 2015, [Online]. Available: https://jurnal.tekmira.esdm.go.id/index.php/minerba/article/view/710.

[17] K. Trinopiawan, Z. Mubarok, K. S. Widana, B. Y. Ani, Y. S. B. Susilo, R. Prassanti, I. Susanto, S. Permana, and J. W. Soedarsono, “A Study of Cerium Extraction From Bangka Tin Slag Using Hydrochloric Acid,” Eastern-European Journal of Enterprise Technologies, vol. 4, no. 4–106, pp. 24–30, 2020, doi: https://doi.org/10.15587/1729-4061.2020.210530.

[18] S. Permana, J. W. Soedarsono, A. Rustandi, A. Maksum, K. S. Widana, K. Trinopiawan, and M. Anggraini, “The enhancement of uranium and thorium in Bangka tin slag,” Atom Indonesia, vol. 44, no. 1, pp. 37–42, Apr. 2018, doi: https://doi.org/10.17146/aij.2018.529.

[19] M. Walawalkar, C. K. Nichol, and G. Azimi, “Process investigation of the acid leaching of rare earth elements from phosphogypsum using HCl, HNO3, and H2SO4,” Hydrometallurgy, vol. 166, pp. 195–204, 2016, doi: https://doi.org/10.1016/j.hydromet.2016.06.008.

[20] G. K. Gupta and N. Krishnamurthy, “Extractive metallurgy of rare earths,” International Material Reviews, vol. 37, no. 1, 1992. doi: https://doi.org/10.1179/imr.1992.37.1.197.

[21] F. Xie, T. A. Zhang, D. Dreisinger, and F. Doyle, “A critical review on solvent extraction of rare earths from aqueous solutions,” Minerals Engineering, vol. 56, pp. 10–28, 2014. doi: https://doi.org/10.1016/j.mineng.2013.10.021.

[22] I. Trisnawati, G. Prameswara, P. Mulyono, A. Prasetya, and H. T. Bayu Murti Petrus’, “Sulfuric Acid Leaching of Heavy Rare Earth Elements (HREEs) from Indonesian Zircon Tailing,” International Journal of Technology, vol. 11, no. 4, pp. 804–816, 2020, doi: https://doi.org/10.14716/ijtech.v11i4.4037.

[23] Q. Tan, J. Li, and X. Zeng, “Rare Earth Elements Recovery from Waste Fluorescent Lamps: A Review,” Critical Reviews in Environmental Science and Technology, vol. 45, no. 7, pp. 749–776, 2015 doi: https://doi.org/10.1080/10643389.2014.900240.

[24] H. L. Nurri, R. Faizal, S. Waluyo, S. Budi, Mukhlis, Sumarni, “Pelarutan (U, Th, Re) Hidroksida Hasil Dekomposisi Basa Monasit Bangka Dengan Menggunakan Asam Nitrat,” Proceeding of Seminar Iptek Nuklir dan Pengelolaan Sumber Daya Tambang, pp. 143–150, 2002.

[25] A. Novriyanisti, R. Prassanti, and K. S. Widana, “Separation of Elements in Bangka Monazite with Multilevel Precipitation,” Eksplorium., vol. 42, no. 1, pp. 69–76, 2021, doi: https://doi.org/10.17146/eksplorium.2021.42.1.6093.

[26] R. Chi, Z. Li, C. Peng, H. Gao, and Z. Xu, “Preparation of enriched cerium oxide from bastnasite with hydrochloric acid by two-step leaching,” Metall. Mater. Trans. B., vol. 37, pp. 155–160, 2006. doi: https://doi.org/10.1007/BF02693144.

[27] L. M. Suli, W. H. W. Ibrahim, B. A. Aziz, M. R. Deraman, and N. A. Ismail, “A Review of Rare Earth Mineral Processing Technology,” Chemical Engineering Research Bulletin, vol. 19, pp. 20–35, 2017, [Online]. Available: https://www.academia.edu/download/80754136/22752.pdf.

[28] G. Prameswara, I. Trisnawati, H. Poernomo, P. Mulyono, A. Prasetya, and H. T. B. M. Petrus, “Kinetics of Yttrium Dissolution from Alkaline Fusion on Zircon Tailings,” Min. Metall. Explor., vol. 37, no. 4, pp. 1297–1305, 2020, doi: https://doi.org/10.1007/s42461-020-00220-x.

[29] J. Huang, Y. Yang, Y. Deng, L. Wang, H. Wang, and Z. Huang, “Leaching Kinetics of Ionic Rare Earth Ore with Magnesium Sulfate,” Xiyou Jinshu/Chinese Journal of Rare Metals, vol. 46, no. 2, pp. 265–272, 2022, doi: https://doi.org/10.13373/j.cnki.cjrm.XY20090010.

[30] Z. Ruan, M. Li, K Gao, D. Zhang, L. Huang, W. Xu, and X Liu, “Effect of Particle Size Refinement on the Leaching Behavior of Mixed Rare-Earth Concentrate Using Hydrochloric Acid,” ACS Omega, vol. 4, no. 6, pp. 9813–9822, 2019, doi: https://doi.org/10.1021/acsomega.9b01141.

[31] G. A. Moldoveanu and V. G. Papangelakis, “Recovery of rare earth elements adsorbed on clay minerals: II. Leaching with ammonium sulfate,” Hydrometallurgy, vol. 131–132, pp. 158–166, 2013, doi: https://doi.org/10.1016/j.hydromet.2012.10.011.

[32] Q. Xiao, Y. Chen, Y. Gao, H. Xu, and Y. Zhang, “Leaching of silica from vanadium-bearing steel slag in sodium hydroxide solution,” Hydrometallurgy, vol. 104, no. 2, pp. 216–221, 2010, doi: https://doi.org/10.1016/j.hydromet.2010.06.007.

[33] M. A. Abdel-Rahman, S. E. D. Hassan, M. N. El-Din, M. S. Azab, E. F. El-Belely, H. M. A. Alrefaey, and T. Elsakhawy “One-factor-at-a-time and response surface statistical designs for improved lactic acid production from beet molasses by Enterococcus hirae ds10,” SN Appl Sci, vol. 2, no. 4, 2020, doi: https://doi.org/10.1007/s42452-020-2351-x.

[34] G. Wu, T. Wang, G. Chen, Z. Shen, and W. P. Pan, “Coal fly ash activated by NaOH roasting: Rare earth elements recovery and harmful trace elements migration,” Fuel, vol. 324, 2022, doi: https://doi.org/10.1016/j.fuel.2022.124515.

[35] J. Ma, W. Li, G. Fu, and M. Zhu, “Effect of Roasting Characteristics on the Alkali Fusion Behavior and Mechanism of Melting Titanium Slag,” Journal of Sustainable Metallurgy, vol. 8, no. 3, pp. 1381–1391, 2022, doi: https://doi.org/10.1007/s40831-022-00580-2.

[36] R. K. Taggart, J. C. Hower, G. S. Dwyer, and H. Hsu-Kim, “Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes,” Environ Sci Technol, vol. 50, no. 11, pp. 5119–5926, 2016, doi: https://doi.org/10.1021/acs.est.6b00085.

[37] J. W. Soedarsono, S. Permana, J. K. Hutauruk, R. Adhyputra, A. Rustandi, A. Maksum, K. S. Widana, K. Trinopiawan and M. Anggraini, “Upgrading tantalum and niobium oxides content in Bangka tin slag with double leaching,” IOP Conference Series: Materials Science and Engineering, vol. 316, p. 012052, 2018. doi: https://doi.org/10.1088/1757-899X/316/1/012052.

[38] S. Stopic and B. Friedrich, “Kinetics of yttrium dissolution from waste ceramic dust,” Vojnotehnicki glasnik, vol. 64, no. 2, pp. 383–395, 2016, doi: https://doi.org/10.5937/vojtehg64-8668.

[39] G. A. Silva, C. O. Petter, and N. R. Albuquerque, “Factors and competitiveness analysis in rare earth mining, new methodology: case study from Brazil,” Heliyon, vol. 4, no. 3, 2018, doi: https://doi.org/10.1016/j.heliyon.2018.e00570.

[40] J. Huang, Y. Yang, Y. Deng, L. Wang, H. Wang, and Z. Huang, “Leaching Kinetics of Ionic Rare Earth Ore with Magnesium Sulfate,” Xiyou Jinshu/Chinese Journal of Rare Metals, vol. 46, no. 2, pp. 265–272, 2022, doi: https://doi.org/10.13373/j.cnki.cjrm.XY20090010.

[41] R. Panda, A. Kumari, M. K. Jha, J. Hait, V. Kumar, J. R. Kumar, and J. Y. Lee, “Leaching of rare earth metals (REMs) from Korean monazite concentrate,” Journal of Industrial and Engineering Chemistry, vol. 20, no. 4, pp. 2035-2042, 2014, doi: https://doi.org/10.1016/ j.jiec.2013.09.028.