Preliminary Study of Yttrium Extraction from Tin Slag Using Hydrochloric Acid
Main Article Content
Abstract
Tin slag, a byproduct of tin smelting, comprises several important metals, including yttrium, tantalum, manganese, iron, aluminum, titanium, and others. As an element that is used a lot in advanced materials, the separation of Yttrium becomes one of the most important steps in rare earth elements extraction. By using the alkali fusion process and leaching method, yttrium in the tin slag has been successfully extracted. The tin slag was subjected to an alkali fusion treatment with sodium hydroxide at a temperature of 700 °C, and the frit was ground into several particle sizes of +100 to -325 mesh using a laboratory ball mill and mortar. The frit was then leached using hydrochloric acid, with four parameters used: temperature, acid concentration, particle size, and stirring speed. The extracted yttrium reached a percentage of up to 86.94% at a temperature of 80 °C, acid concentration of 2 M, particle size of -325 mesh, and stirring speed of 150 rpm.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Introduction
By using or sharing content from EKSPLORIUM - Buletin Pusat Pengembangan Bahan Galian Nuklir ("the Journal"), you agree to follow these Terms and Conditions. The Journal's content is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) license. If you do not agree to these terms, please do not use the content.
2. How You Can Use the Content
-
Share: You can copy, share, and distribute the work, but only for non-commercial purposes.
-
Adapt: You can change, remix, or build on the work, as long as it is for non-commercial purposes and you share it under the same license (CC BY-NC-SA).
3. Attribution (Giving Credit)
When you use or share the content, you must:
-
Give proper credit to the author(s).
-
Mention the title of the work and the journal name.
-
Provide a link to the license (https://creativecommons.org/licenses/by-nc-sa/4.0/).
-
Indicate if you made any changes to the work.
4. Non-Commercial Use
You cannot use the work to make money or for any commercial activities. For example, you cannot sell or use the content in advertisements.
If you want to use the content for commercial purposes, you need to get permission from the author(s) or the publisher.
5. ShareAlike
If you make changes to the content (like creating a new version or remixing it), you must share your new version under the same CC BY-NC-SA license.
6. Exclusions
Some materials in the Journal may have different licenses or restrictions, such as third-party content (like images or datasets). You must respect the rules for those materials.
7. No Warranty
The content is provided "as is." The authors and publisher do not guarantee that the content is error-free or suitable for any specific purpose. Use the content at your own risk.
8. Modifications and Withdrawal of Content
The publisher and authors can update or remove content at any time. If content is removed, the previous versions will still follow these terms.
9. Ethical Use
You must use the content ethically and follow all relevant laws. This includes properly citing the original authors and not misusing the content.
10. Legal Compliance
You are responsible for making sure your use of the content follows the laws of your country. If you believe content violates your rights, please contact us.
11. Changes to Terms
These Terms and Conditions may be updated from time to time. Any changes will be posted on the Journal's website.
12. Contact Information
For questions about these Terms or for permission to use content commercially, please contact us at:
-
Email: eksplorium@brin.go.id
-
Website: https://ejournal.brin.go.id/eksplorium
Conclusion
By using the content from EKSPLORIUM - Buletin Pusat Pengembangan Bahan Galian Nuklir, you agree to follow these Terms and Conditions and the CC BY-NC-SA 4.0 International License.
References
[1] A. C. O. Duarte and R. de S. Rodrigues, “Rare Earth Elements: What Are They, What Are Their Environmental Effects?,” Sustentare, vol. 4, no. 1, pp. 8–21, 2020, doi: https://doi.org/10.5892/st.v4i1.6154.
[2] B. Zhou, Z. Li, and C. Chen, “Global potential of rare earth resources and rare earth demand from clean technologies,” vol. 7, no. 11, p. 203 2017, MDPI AG. doi: https://doi.org/10.3390/min7110203.
[3] T. E. Amer, W. M. Abdella, G. M. A. Wahab, and E. M. El-Sheikh, “A suggested alternative procedure for processing of monazite mineral concentrate,” Int J Miner Process, vol. 125, pp. 106–111, 2013, doi: https://doi.org/10.1016/j.minpro.2013.10.004.
[4] N. Olukotun, A. R. M. Sam, N. H. A. Shukor Lim, M. Abdulkareem, I. Mallum, and O. Adebisi, “Mechanical properties of tin slag mortar,” Recycling, vol. 6, no. 2, p. 42, 2021, doi: https://doi.org/10.3390/recycling6020042.
[5] M. Gergoric, C. Ekberg, B. M. Steenari, and T. Retegan, “Separation of Heavy Rare-Earth Elements from Light Rare-Earth Elements Via Solvent Extraction from a Neodymium Magnet Leachate and the Effects of Diluents,” Journal of Sustainable Metallurgy, vol. 3, no. 3, pp. 601–610, Sep. 2017, doi: https://doi.org/10.1007/s40831-017-0117-5.
[6] T. Liu and J. Chen, “Extraction and separation of heavy rare earth elements: A review,” Dec. 01, 2021, Elsevier B.V. doi: https://doi.org/10.1016/j.seppur.2021.119263.
[7] D. LI, “A review on yttrium solvent extraction chemistry and separation process,” Chinese Society of Rare Earths., vol. 35 no. 2, pp. 107–119, 2017, doi: https://doi.org/10.1016/S1002-0721(17)60888-3.
[8] K. Szamałek, G. Konopka, K. Zglinicki, and B. Marciniak-Maliszewska, “Nowe potencjalne źRódło pierwiastków ziem rzadkich,” Gospodarka Surowcami Mineralnymi / Mineral Resources Management, vol. 29, no. 4, pp. 59–76, 2013, doi: https://doi.org/10.2478/gospo-2013-0041.
[9] J. U. Odo, W. C. Okafor, S. O. Ekpe, and C. C. Nwogbu, “Extraction of Niobium from Tin Slag,” International Journal of Scientific and Research Publications, vol. 4, no. 11, pp. 1–7, 2014.
[10] O. Firdaus and R. Kurniawan, “Penggunaan Limbah Peleburan Timah (Tin Slag) Sebagai Agregat Kasar Pada Campuran Hot Rolled Sheet- Wearing Course Untuk Perkerasan Jalan Raya,” FROPIL (Forum Profesional Teknik Sipil), vol. 2, no. 2, pp. 120–134, 2014, [Online]. Available: http://journal.ubb.ac.id/index.php/fropil/article/view/276.
[11] K. S. Widana, I. Rosianna, D. Kamajati, F. D. Indrastomo, Y. S. B. Susilo, and A. Sumaryanto, “Characterization of unconventional rare earth elements resources from Bangka monazite and tin slag,” AIP Conference Proceedings, vol. 2517, p. 020008, 2023. doi: https://doi.org/10.1063/ 5.0121551.
[12] I. Gaballah, E. Allain, M. C. Meyer-Joly, and K. Malau, “A possible method for the characterization of amorphous slags: Recovery of refractory metal oxides from tin slags,” Metallurgical Transactions B, vol. 23, no. 3, pp. 249–259, 1992, doi: https://doi.org/10.1007/BF02656280.
[13] W. Kartika, R. A. Majid, and D. Navanti, “Studi Pemanfataan Limbah Terak Timah 2 Bangka Sebagai Sumber Sekunder Unsur Skandium,” Jurnal Kajian Ilmiah, vol. 19, no. 1, pp. 8–16, 2019.
[14] C. Subramanian and A. K. Suri, “Recovery of niobium and tantalum from low grade tin slag-A hydrometallurgical approach,” Environmental and Waste Management, pp. 100–107, 1998, [Online]. Available: https://core.ac.uk/download/pdf/297712235.pdf.
[15] J. S. Judge, “A Study of the Dissolution of SiO[sub 2] in Acidic Fluoride Solutions,” J Electrochem Soc, vol. 118, no. 11, p. 1772, 1971, doi: https://doi.org/10.1149/1.2407835.
[16] N. Saleh, I. Rodliyah, and S. Rochani, “Eliminasi Senyawa Silika dari Terak Peleburan Timah Menggunakan Asam Fluoro-Silikat,” Teknologi Mineral dan Batubara, vol. 11, no. 4, pp. 107–117, 2015, [Online]. Available: https://jurnal.tekmira.esdm.go.id/index.php/minerba/article/view/710.
[17] K. Trinopiawan, Z. Mubarok, K. S. Widana, B. Y. Ani, Y. S. B. Susilo, R. Prassanti, I. Susanto, S. Permana, and J. W. Soedarsono, “A Study of Cerium Extraction From Bangka Tin Slag Using Hydrochloric Acid,” Eastern-European Journal of Enterprise Technologies, vol. 4, no. 4–106, pp. 24–30, 2020, doi: https://doi.org/10.15587/1729-4061.2020.210530.
[18] S. Permana, J. W. Soedarsono, A. Rustandi, A. Maksum, K. S. Widana, K. Trinopiawan, and M. Anggraini, “The enhancement of uranium and thorium in Bangka tin slag,” Atom Indonesia, vol. 44, no. 1, pp. 37–42, Apr. 2018, doi: https://doi.org/10.17146/aij.2018.529.
[19] M. Walawalkar, C. K. Nichol, and G. Azimi, “Process investigation of the acid leaching of rare earth elements from phosphogypsum using HCl, HNO3, and H2SO4,” Hydrometallurgy, vol. 166, pp. 195–204, 2016, doi: https://doi.org/10.1016/j.hydromet.2016.06.008.
[20] G. K. Gupta and N. Krishnamurthy, “Extractive metallurgy of rare earths,” International Material Reviews, vol. 37, no. 1, 1992. doi: https://doi.org/10.1179/imr.1992.37.1.197.
[21] F. Xie, T. A. Zhang, D. Dreisinger, and F. Doyle, “A critical review on solvent extraction of rare earths from aqueous solutions,” Minerals Engineering, vol. 56, pp. 10–28, 2014. doi: https://doi.org/10.1016/j.mineng.2013.10.021.
[22] I. Trisnawati, G. Prameswara, P. Mulyono, A. Prasetya, and H. T. Bayu Murti Petrus’, “Sulfuric Acid Leaching of Heavy Rare Earth Elements (HREEs) from Indonesian Zircon Tailing,” International Journal of Technology, vol. 11, no. 4, pp. 804–816, 2020, doi: https://doi.org/10.14716/ijtech.v11i4.4037.
[23] Q. Tan, J. Li, and X. Zeng, “Rare Earth Elements Recovery from Waste Fluorescent Lamps: A Review,” Critical Reviews in Environmental Science and Technology, vol. 45, no. 7, pp. 749–776, 2015 doi: https://doi.org/10.1080/10643389.2014.900240.
[24] H. L. Nurri, R. Faizal, S. Waluyo, S. Budi, Mukhlis, Sumarni, “Pelarutan (U, Th, Re) Hidroksida Hasil Dekomposisi Basa Monasit Bangka Dengan Menggunakan Asam Nitrat,” Proceeding of Seminar Iptek Nuklir dan Pengelolaan Sumber Daya Tambang, pp. 143–150, 2002.
[25] A. Novriyanisti, R. Prassanti, and K. S. Widana, “Separation of Elements in Bangka Monazite with Multilevel Precipitation,” Eksplorium., vol. 42, no. 1, pp. 69–76, 2021, doi: https://doi.org/10.17146/eksplorium.2021.42.1.6093.
[26] R. Chi, Z. Li, C. Peng, H. Gao, and Z. Xu, “Preparation of enriched cerium oxide from bastnasite with hydrochloric acid by two-step leaching,” Metall. Mater. Trans. B., vol. 37, pp. 155–160, 2006. doi: https://doi.org/10.1007/BF02693144.
[27] L. M. Suli, W. H. W. Ibrahim, B. A. Aziz, M. R. Deraman, and N. A. Ismail, “A Review of Rare Earth Mineral Processing Technology,” Chemical Engineering Research Bulletin, vol. 19, pp. 20–35, 2017, [Online]. Available: https://www.academia.edu/download/80754136/22752.pdf.
[28] G. Prameswara, I. Trisnawati, H. Poernomo, P. Mulyono, A. Prasetya, and H. T. B. M. Petrus, “Kinetics of Yttrium Dissolution from Alkaline Fusion on Zircon Tailings,” Min. Metall. Explor., vol. 37, no. 4, pp. 1297–1305, 2020, doi: https://doi.org/10.1007/s42461-020-00220-x.
[29] J. Huang, Y. Yang, Y. Deng, L. Wang, H. Wang, and Z. Huang, “Leaching Kinetics of Ionic Rare Earth Ore with Magnesium Sulfate,” Xiyou Jinshu/Chinese Journal of Rare Metals, vol. 46, no. 2, pp. 265–272, 2022, doi: https://doi.org/10.13373/j.cnki.cjrm.XY20090010.
[30] Z. Ruan, M. Li, K Gao, D. Zhang, L. Huang, W. Xu, and X Liu, “Effect of Particle Size Refinement on the Leaching Behavior of Mixed Rare-Earth Concentrate Using Hydrochloric Acid,” ACS Omega, vol. 4, no. 6, pp. 9813–9822, 2019, doi: https://doi.org/10.1021/acsomega.9b01141.
[31] G. A. Moldoveanu and V. G. Papangelakis, “Recovery of rare earth elements adsorbed on clay minerals: II. Leaching with ammonium sulfate,” Hydrometallurgy, vol. 131–132, pp. 158–166, 2013, doi: https://doi.org/10.1016/j.hydromet.2012.10.011.
[32] Q. Xiao, Y. Chen, Y. Gao, H. Xu, and Y. Zhang, “Leaching of silica from vanadium-bearing steel slag in sodium hydroxide solution,” Hydrometallurgy, vol. 104, no. 2, pp. 216–221, 2010, doi: https://doi.org/10.1016/j.hydromet.2010.06.007.
[33] M. A. Abdel-Rahman, S. E. D. Hassan, M. N. El-Din, M. S. Azab, E. F. El-Belely, H. M. A. Alrefaey, and T. Elsakhawy “One-factor-at-a-time and response surface statistical designs for improved lactic acid production from beet molasses by Enterococcus hirae ds10,” SN Appl Sci, vol. 2, no. 4, 2020, doi: https://doi.org/10.1007/s42452-020-2351-x.
[34] G. Wu, T. Wang, G. Chen, Z. Shen, and W. P. Pan, “Coal fly ash activated by NaOH roasting: Rare earth elements recovery and harmful trace elements migration,” Fuel, vol. 324, 2022, doi: https://doi.org/10.1016/j.fuel.2022.124515.
[35] J. Ma, W. Li, G. Fu, and M. Zhu, “Effect of Roasting Characteristics on the Alkali Fusion Behavior and Mechanism of Melting Titanium Slag,” Journal of Sustainable Metallurgy, vol. 8, no. 3, pp. 1381–1391, 2022, doi: https://doi.org/10.1007/s40831-022-00580-2.
[36] R. K. Taggart, J. C. Hower, G. S. Dwyer, and H. Hsu-Kim, “Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes,” Environ Sci Technol, vol. 50, no. 11, pp. 5119–5926, 2016, doi: https://doi.org/10.1021/acs.est.6b00085.
[37] J. W. Soedarsono, S. Permana, J. K. Hutauruk, R. Adhyputra, A. Rustandi, A. Maksum, K. S. Widana, K. Trinopiawan and M. Anggraini, “Upgrading tantalum and niobium oxides content in Bangka tin slag with double leaching,” IOP Conference Series: Materials Science and Engineering, vol. 316, p. 012052, 2018. doi: https://doi.org/10.1088/1757-899X/316/1/012052.
[38] S. Stopic and B. Friedrich, “Kinetics of yttrium dissolution from waste ceramic dust,” Vojnotehnicki glasnik, vol. 64, no. 2, pp. 383–395, 2016, doi: https://doi.org/10.5937/vojtehg64-8668.
[39] G. A. Silva, C. O. Petter, and N. R. Albuquerque, “Factors and competitiveness analysis in rare earth mining, new methodology: case study from Brazil,” Heliyon, vol. 4, no. 3, 2018, doi: https://doi.org/10.1016/j.heliyon.2018.e00570.
[40] J. Huang, Y. Yang, Y. Deng, L. Wang, H. Wang, and Z. Huang, “Leaching Kinetics of Ionic Rare Earth Ore with Magnesium Sulfate,” Xiyou Jinshu/Chinese Journal of Rare Metals, vol. 46, no. 2, pp. 265–272, 2022, doi: https://doi.org/10.13373/j.cnki.cjrm.XY20090010.
[41] R. Panda, A. Kumari, M. K. Jha, J. Hait, V. Kumar, J. R. Kumar, and J. Y. Lee, “Leaching of rare earth metals (REMs) from Korean monazite concentrate,” Journal of Industrial and Engineering Chemistry, vol. 20, no. 4, pp. 2035-2042, 2014, doi: https://doi.org/10.1016/ j.jiec.2013.09.028.