Analysis of Rock Mass Quality and Support Requirements Using Q-System – Case Study: Kalan Uranium Exploration Tunnel, West Kalimantan, Indonesia
Main Article Content
Abstract
The Kalan uranium exploration tunnel was one of the nuclear minerals research facilities in Indonesia. This 618 m long tunnel, located in West Kalimantan, Indonesia, was built on Eko Remaja Hill and operated from 1980-2021. In this tunnel, uranium mineralization occurs as irregular veins (stockworks) in metasiltstone and metapelite. The high density of these veins causes the formation of several weak zones in the tunnel. These weak zones cause rock and soil failures at several locations in the tunnel. The study aims to evaluate the quality of the rock mass surrounding the tunnel and determine the support requirements necessary to prevent further structural failures. Scanline surveys were carried out in several zones that have not experienced failures to obtain Q-system parameters. Based on the results of the analysis, the rock mass that makes up the Kalan tunnel has a Q value of 0.61–48.22, so that it belongs to the class of very poor-very good rocks. By plotting the Q value with its equivalent dimension (ED) on the rock support chart, it is estimated that the support required by the tunnel is average bolt spacing without fiber-reinforced sprayed concrete. The ultimate pressures of the roof and wall support can bear are 0.04–0.24 MPa and 0.03–0.17 MPa, respectively.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Introduction
By using or sharing content from EKSPLORIUM - Buletin Pusat Pengembangan Bahan Galian Nuklir ("the Journal"), you agree to follow these Terms and Conditions. The Journal's content is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) license. If you do not agree to these terms, please do not use the content.
2. How You Can Use the Content
-
Share: You can copy, share, and distribute the work, but only for non-commercial purposes.
-
Adapt: You can change, remix, or build on the work, as long as it is for non-commercial purposes and you share it under the same license (CC BY-NC-SA).
3. Attribution (Giving Credit)
When you use or share the content, you must:
-
Give proper credit to the author(s).
-
Mention the title of the work and the journal name.
-
Provide a link to the license (https://creativecommons.org/licenses/by-nc-sa/4.0/).
-
Indicate if you made any changes to the work.
4. Non-Commercial Use
You cannot use the work to make money or for any commercial activities. For example, you cannot sell or use the content in advertisements.
If you want to use the content for commercial purposes, you need to get permission from the author(s) or the publisher.
5. ShareAlike
If you make changes to the content (like creating a new version or remixing it), you must share your new version under the same CC BY-NC-SA license.
6. Exclusions
Some materials in the Journal may have different licenses or restrictions, such as third-party content (like images or datasets). You must respect the rules for those materials.
7. No Warranty
The content is provided "as is." The authors and publisher do not guarantee that the content is error-free or suitable for any specific purpose. Use the content at your own risk.
8. Modifications and Withdrawal of Content
The publisher and authors can update or remove content at any time. If content is removed, the previous versions will still follow these terms.
9. Ethical Use
You must use the content ethically and follow all relevant laws. This includes properly citing the original authors and not misusing the content.
10. Legal Compliance
You are responsible for making sure your use of the content follows the laws of your country. If you believe content violates your rights, please contact us.
11. Changes to Terms
These Terms and Conditions may be updated from time to time. Any changes will be posted on the Journal's website.
12. Contact Information
For questions about these Terms or for permission to use content commercially, please contact us at:
-
Email: eksplorium@brin.go.id
-
Website: https://ejournal.brin.go.id/eksplorium
Conclusion
By using the content from EKSPLORIUM - Buletin Pusat Pengembangan Bahan Galian Nuklir, you agree to follow these Terms and Conditions and the CC BY-NC-SA 4.0 International License.
References
[1] A. Zaenal, “Beton Cetak Bertulang sebagai Alternatif Pengganti Kayu Penyangga di Terowongan Eksplorasi U Eko Remaja Kalimantan Barat,” in Prosiding Seminar Geologi Nuklir dan Sumberdaya Tambang, 2006.
[2] D. Kamajati, H. Syaeful, and B. G. Mirna, “Evaluasi Massa Batuan Terowongan Eksplorasi Uranium Eko Remaja, Kalan, Kalimantan Barat,” Eksplorium, vol. 37, no. 2, pp. 89–100, 2016.
[3] Ngadenin, “Recent Activities in the Uranium Mining Tunnel, West Kalimantan, Indonesia,” 2019. [Online]. Available: https://nucleus.iaea.org/sites/connect/UPCpublic/UMREG Presentations/Indonesia_Recent Activities in The Uranium Mining Tunnel%2C West Kalimantan.pdf.
[4] Y. Faizah, W. Cakrabuana, D. Kamajati, and P. Rahmawati, “Analisis Kualitas dan Perkuatan Massa Batuan Terowongan Eksplorasi Uranium Eko Remaja Kalan, Kalimantan Barat Menggunakan Metode RMR (Rock Mass Rating),” Eksplorium, vol. 41, no. 1, pp. 25–36, May 2020, doi: https://www.doi.org/10.17146/eksplorium.2020.41.1.5859.
[5] H. Syaeful, I. G. Sukadana, Y. S. B. Susilo, F. D. Indrastomo, A. G. Muhammad, and Ngadenin, “Uranium Exploration, Deposit and Resources: The Key of Nuclear Power Plant Development Program in Indonesia,” in Journal of Physics: Conference Series, Yogyakarta: IOP Publishing, 2021. doi: https://www.doi.org/10.1088/1742-6596/2048/1/012003.
[6] H. Farhadian, H. Katibeh, P. Huggenberger, and C. Butscher, “Optimum model extent for numerical simulation of tunnel inflow in fractured rock,” Tunn. Undergr. Sp. Technol., vol. 60, pp. 21–29, 2016, doi: https://www.doi.org/10.1016/j.tust.2016.07.014.
[7] H. Syaeful and Suharji, “Geostatistics Application on Uranium Resources Classification: Case Study of Rabau Hulu Sector, Kalan, West Kalimantan,” Eksplorium, vol. 39, no. 2, pp. 131–140, 2018, doi: https://www.doi.org/10.17146/eksplorium.2018.39.2.4960.
[8] A. M. Sharaky, K. M. A. El Maksoud, F. Oraby, H. M. Haridy, H. I. El Sundoly, and M. S. A. El Azim, “Practical Estimates of Rock Mass Strength and Deformation Modulus: A Case Study of Gattar-V Uranium Occurrence, Arabo-African Shield,” Iraqi Natl. J. Earth Sci., vol. 25, no. 2, pp. 320–330, 2025, doi: https://www.doi.org/10.33899/earth.2024.145626.1203.
[9] C. Morrish, “Mining Techniques for Uranium Ore Pod Recovery,” McGill University, 1997.
[10] Norwegian Geotechnical Institute, Using the Q-system - Rock mass classification and support design. Oslo: Norwegian Geotechnical Institute, 2025.
[11] P. R. Joshi, M. Kharel, A. Poudel, G. R. Joshi, and D. Sapkota, “Correlation of Rock Mass Rating (RMR), Tunneling Quality Index (Q), and Geological Strength Index (GSI) in Pre-Cambrian Dolomite Based on Field Data,” in 4th European Regional Conference of IAEG, Dubrovnik: IAEG, 2024, pp. 11–23. doi: https://www.doi.org/10.5592/CO/EUROENGEO.2024.105.
[12] H. Rehman, W. Ali, A. M. Naji, J. Kim, R. A. Abdullah, and H. Yoo, “Review of Rock-Mass Rating and Tunneling Quality Index Systems for Tunnel Design: Development, Refinement, Application and Limitation,” Appl. Sci., vol. 8, no. 8, p. 1250, 2018, doi: https://www.doi.org/10.3390/app8081250.
[13] R. Ulusay and J. A. Hudson, The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006. Ankara: The ISRM Turkish National Group, 2007. [Online]. Available: https://www.scirp.org/reference/referencespapers?referenceid=1673351.
[14] H. I. Chaminé, M. J. Afonso, L. Ramos, and R. Pinheiro, “Scanline Sampling Techniques for Rock Engineering Surveys: Insights from Intrinsic Geologic Variability and Uncertainty,” in Engineering Geology for Society and Territory, Springer, 2015, pp. 357–361. doi: https://www.doi.org/10.1007/978-3-319-09060-3_61.
[15] W. Ali, R. A. Abdullah, H. Rehman, and M. Junaid, “The effect of scanline direction and extent of rock exposure on assessment of geometrical properties of discontinuities in rock mass,” in IOP Conference Series: Materials Science and Engineering, Kuala Lumpur: IOP Publishing, 2019. doi: https://www.doi.org/10.1088/1757-899X/527/1/012034.
[16] B. Lepillier P-O. Bruna, D. Bruhn, E. Bastesen, A. Daniilidis, Ó. Garcia, A. Torabi, and W. Wheeler, “From outcrop scanlines to discrete fracture networks, an integrative workflow,” J. Struct. Geol., vol. 133, no. 103992, 2020, doi: https://www.doi.org/10.1016/j.jsg.2020.103992.
[17] C. Zangerl, M. Koppensteiner, and T. Strauhal, “Semiautomated Statistical Discontinuity Analyses from Scanline and Other Methods,” Appl. Sci., vol. 12, no. 19, 2022, doi: https://www.doi.org/10.3390/app12199622.
[18] N. Barton, R. Lien, and J. Lunde, “Engineering classification of rock masses for the design of tunnel support,” Rock Mech. Rock Eng., vol. 6, no. 4, pp. 189–236, 1974, doi: https://www.doi.org/10.1007/BF01239496.
[19] E. Grimstad and N. Barton, “Updating of the Q-system for NMT,” in International Symposium on Sprayed Concrete, Fagernes, 1993, pp. 46–66. [Online]. Available: https://www.scirp.org/reference/referencespapers?referenceid=2013391.
[20] H. S. Karyono, “Analisis Kontrol Tektonik pada Vein Mineralisasi di Bukit Eko, Kalan, Kalimantan Barat,” in Prosiding PIT IAGI, 1991, pp. 115–128.
[21] R. Sahputra, “Identification of Radiometric and Mineragraphy Analysis of Uranium and Sulfide Mineral at BM-179 Kalan-West Kalimantan Uranium Ore,” Am. Sci. Res. J. Eng. Technol. Sci., vol. 14, no. 2, pp. 311–321, 2015, [Online]. Available: https://asrjetsjournal.org/American_Scientific_Journal/article/view/1062.
[22] A. G. Muhammad, R. C. Ciputra, and H. Syaeful, “Fracture Analysis of Uranium-Bearing Rock in Eko-Remaja Exploration Tunnel at Depth 50-200 Meters, Kalan, West Kalimantan,” in Journal of Physics: Conference Series, IOP Publishing, 2019. doi: https://www.doi.org/10.1088/1742-6596/1363/1/012013.
[23] R. C. Ciputra, M. N. Heriawan, H. Syaeful, D. Kamajati, and P. Rahmawati, “Geostatistical Ore Body Modeling on Uranium Mineralization in Remaja Sector, Kalan Area, West Kalimantan,” Eksplorium, vol. 43, no. 1, pp. 41–58, 2022, doi: https://www.doi.org/10.17146/eksplorium.2022.43.1.6622.
[24] Amiruddin and D. S. Trail, Peta Geologi Lembar Nanga Pinoh, Kalimantan. Bandung, 1993.
[25] W. Cakrabuana, E. N. S. Argianto, R. C. Ciputra, and D. Kamajati, “Geological, Geochemical, and Radiometric Study of Sandstone-type Uranium Deposit Exploration in Menukung Area, West Borneo,” IAGI J., vol. 1, no. 1, pp. 1–12, 2021, doi: https://www.doi.org/10.51835/iagij.2021.1.1.15.
[26] B. Batara and C. Xu, “Evolved magmatic arcs of South Borneo: Insights into Cretaceous slab subduction,” Gondwana Res., vol. 111, pp. 142–164, 2022, doi: https://www.doi.org/10.1016/j.gr.2022.08.001.
[27] R. A. Farrenzo, R. D. Nugraheni, I. G. Sukadana, F. D. Indrastomo, and T. B. Adimedha, “Characterization of Metapelite and Metasiltstone as Uranium-REE hosted rocks in Rirang Area, West Kalimantan,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2023. doi: https://www.doi.org/10.1088/1755-1315/1233/1/012027.
[28] F. D. Indrastomo, I. G. Sukadana, T. B. Adimedha, W. Cakrabuana, R. Fauzi, H. Syaeful, R. C. Ciputra, and Y. Rachael, “Uranium Deposit Reflection from Radon-Thoron in Melawi Basin, West Kalimantan,” in International Conference on Nuclear Science, Technology, and Applications – ICONSTA 2022, Tangerang Selatan: AIP Publishing, 2024, p. 9. doi: https://www.doi.org/10.1063/5.0192880.
[29] S. Tjokrokardono, B. Soetopo, L. Subiantoro, and K. S. Widana, “Geologi dan Mineralisasi Uranium Kalan, Kalimantan Barat,” in Laporan Hasil Penelitian Tahun 2005, Jakarta: Batan, 2005, pp. 27–52.
[30] H. T. Breitfeld, L. Davies, R. Hall, R. Armstrong, M. Forster, G. Lister, M. Thirlwall, N. Grassineau, J. H. Breitfeld, and M. W. A. van Hattum, “Mesozoic Paleo-Pacific Subduction Beneath SW Borneo: U-Pb Geochronology of the Schwaner Granitoids and the Pinoh Metamorphic Group,” Front. Earth Sci., vol. 8, pp. 1–37, 2020, doi: https://www.doi.org/10.3389/feart.2020.568715.
[31] R. C. Ciputra, Suharji, D. Kamajati, and H. Syaeful, “Application of geostatistics to complete uranium resources estimation of Rabau Hulu Sector, Kalan, West Kalimantan,” in E3S Web of Conferences, E3S, 2020. doi: https://www.doi.org/10.1051/e3sconf/202020006001.
[32] L. Davies, R. Hall, and M. Forster, “Age and Character of Basement Rocks in SW Borneo — Ar-Ar dating of Pinoh Metamorphic Group rocks,” in Tectonic Evolution and Sedimentation of South China Sea Region, Kinabalu: AAPG, 2015. [Online]. Available: https://www.searchanddiscovery.com/pdfz/abstracts/pdf/2015/90236apr/abstracts/ndx_davies.pdf.html.
[33] X. Qian, Y. Yu, Y. Wang, C. Gan, Y. Zhang, and J. B. Asis, “Late Cretaceous Nature of SW Borneo and Paleo-Pacific Subduction: New Insights from the Granitoids in the Schwaner Mountains,” Lithosphere, vol. 1, pp. 1–22, 2022, doi: https://www.doi.org/10.2113/2022/8483732.
[34] Y. Wang, S. Wu, X. Qian, P. A. Cawood, X. Lu, C. Gan, J. Bin Asis, and P.Zhang, “Early Cretaceous subduction in NW Kalimantan: Geochronological and geochemical constraints from the Raya and Mensibau igneous rocks,” Gondwana Res., vol. 101, pp. 243–256, 2022, doi: https://www.doi.org/10.1016/j.gr.2021.08.006.
[35] P. R. Williams, C. R. Johnston, R. A. Almond, and W. H. Simamora, “Late Cretaceous to Early Tertiary Structure Element of West Kalimantan,” in Tectonophysics, 1988, pp. 279–297. doi: https://www.doi.org/10.1016/0040-1951(88)90135-7.
[36] H. S. Karyono and M. Ruhland, “Use of multiscalar processing of remotely sensed data in Kalan fracturation networks, west Kalimantan, Indonesia, for future mineralisations research,” ISPRS J. Photogramm. Remote Sens., vol. 45, no. 5–6, pp. 428–441, 1990, doi: https://www.doi.org/10.1016/0924-2716(90)90033-8.
[37] A. G. Muhammad and F. D. Indrastomo, “Validitas dan Reliabilitas Data Estimasi Kadar Uranium Sektor Lembah Hitam, Kalan, Kalimantan Barat,” Eksplorium, vol. 40, no. 2, pp. 75–88, 2019, doi: https://www.doi.org/10.17146/eksplorium. 2019.40.2.5672.
[38] T. B. Adimedha, R. A. Farrenzo, I. G. Sukadana, R. D. Nugraheni, F. Pratiwi, R. C. Ciputra, F. D. Indrastomo, H. Syaeful, and Y. Rachael, “Distribution and Characteristics of Rare Earth Elements in Uranium-Ore Deposits from Rirang Area, West Kalimantan Province, Indonesia,” Eksplorium, vol. 45, no. 1, pp. 1–16, 2024, doi: https://www.doi.org/10.55981/eksplorium.2024.7058.
[39] J. A. Hudson, Rock Mechanics Principles in Engineering Practice. London: CIRIA/Butterworths, 1989.
[40] N. Kumar, “Rock mass characterisation and evaluation of supports for tunnels in Himalaya,” Indian Institute of Technology Roorkee, 2002. [Online]. Available: http://hdl.handle.net/123456789/6714.
[41] H. Rehman, A. M. Naji, J. Kim, and H. Yoo, “Empirical Evaluation of Rock Mass Rating and Tunneling Quality Index System for Tunnel Support Design,” Appl. Sci., vol. 8, no. 5, p. 782, 2018, doi: https://www.doi.org/10.3390/app8050782.
[42] J. Lee, H. Rehman, A. M. Naji, J. Kim, and H. Yoo, “An Empirical Approach for Tunnel Support Design through Q and RMi Systems in Fractured Rock Mass,” Appl. Sci., vol. 8, no. 12, p. 2659, 2018, doi: https://www.doi.org/10.3390/app8122659.
[43] D. U. Deere, “Technical Description of Rock Cores for Engineering Purposes,” Rock Mech. Eng. Geol., vol. 1, no. 1, pp. 16–22, 1963.
[44] S. D. Priest and J. A. Hudson, “Discontinuity spacings in rock,” Int. J. Rock Mech. Min. Sci., vol. 13, no. 5, pp. 135–148, 1976, doi: https://www.doi.org/10.1016/0148-9062(76)90818-4.
[45] N. Barton, “Some new Q-value correlations to assist in site characterisation and tunnel design,” Int. J. Rock Mech. Min. Sci., vol. 39, no. 2, pp. 185–216, 2002, doi: https://www.doi.org/10.1016/S1365-1609(02)00011-4.
[46] N. Barton, “Training course on rock engineering,” New Delhi, 2008.
[47] E. Grimstad, K. Kankes, R. Bhasin, A. Magnussen, and A. Kaynia, “Rock mass quality Q used in designing reinforced ribs of sprayed concrete and energy absorption,” in International Symposium on Sprayed Concrete, Davos: Norwegian Geotechnical Institute, 2002, pp. 134–142. [Online]. Available: https://www.semanticscholar.org/paper/ROCK-MASS-QUALITY-Q-USED-IN-DESIGNING-REINFORCED-OF-Grimstad-Kankes/156bbd10ea2b538c151dbde23a40a4af4dcbb0f9.
[48] Rocscience, RocLab 1.0 - Rock mass strength analysis using the generalized Hoek-Brown failure criterion. Rocscience, 2007. [Online]. Available: https://www.resolutionmineeis.us/sites/default/files/references/rocscience-2007.pdf.
[49] E. Hoek, C. Carranza-Torres, and B. Corkum, “Hoek-Brown Failure Criterion - 2002,” in North American Rock Mechanics Symposium, Toronto: Tunnel Association of Canada, 2002, pp. 267–273. [Online]. Available: https://www.rocscience.com/assets/resources/learning/hoek/Hoek-Brown-Failure-Criterion-2002.pdf.
[50] R. E. Aufmuth, “A systematic determination of engineering criteria for rocks,” Eng. Geol., vol. 11, pp. 235–245, 1973, doi: https://www.doi.org/10.1016/0148-9062%2875%2990749-4.
[51] E. Hoek, T. G. Carter, and M. S. Diederichs, “Quantification of the Geological Strength Index Chart,” in 47th US Rock Mechanics/Geomechanics Symposium, San Fransisco: ARMA, 2013, pp. 1757–1764. [Online]. Available: https://www.rocscience.com/assets/resources/learning/hoek/2013-Quantification-of-the-GSI-Chart.pdf.
[52] P. Marinos and E. Hoek, “A geologically friendly tool for rock mass strength estimation,” in ISRM International Symposium, Melbourne: ISRM, 2000. [Online]. Available: https://www.rocscience.com/assets/resources/learning/hoek/2000-GSI-A-Geologically-Friendly-Tool-for-Rock-Mass-Strength-Estimation.pdf.
[53] E. Hoek, Practical Rock Engineering. British Columbia: Rocscience, 2007. [Online]. Available: https://www.rocscience.com/hoek/corner/Practical_Rock_Engineering.pdf.
[54] H. Syaeful and D. Kamajati, “Analisis Karakteristik Massa Batuan di Sektor Lemajung, Kalan, Kalimantan Barat,” Eksplorium, vol. 36, no. 1, pp. 17–30, 2015, doi: https://www.doi.org/10.17146/eksplorium.2015.36.1.2768.