Interpretasi Bawah Permukaan Berdasarkan Distribusi Nilai Tahanan Jenis di Daerah Puspiptek, Serpong
Main Article Content
Abstract
The area of Center for Research in Science and Technology (PUSPIPTEK) Serpong is 460 hectares wide. Most of the area is a Green Open Spaces (RTH). In the line with the growth of research activities, the need for infrastructure and building facilities also increases. As a national strategic facility, it is necessary to design buildings that are sturdy for and suitable with subsurface conditions. Geolectrical survey can be used to determine of subsurface condition/information. The purpose of this study is to obtain the ilustration of subsurface, based on the distribution of geoelectric resistivity values in the site of Experimental Power Reactor (RDE) construction. The resistivity data acquisition is using a multichannel resistivitymeter MAE X612EM+ type in 2-D by 48 channel of Wenner-Schlumberger configuration. The numbers of elctrodes used are 48 with an electrode interval of 5 m. Based on 2-D inversion model, there are four section models obtained, namely line-1, line 2, line-3, and line-4. The data error for each section is relatively small, less than 12%. Geological interpretation carried out in the section line-2 and line-3 illustrates the existence of layers A, B, and C. Layer A is interpreted as rock with silt to clay grain size containing organic material with resistivity values range 2-20 ohm-m and thickness varries in 1-7 m. Layer B is interpreted as sandstone which has a range of resistivity values from 10-90 ohm-m with thickness variations 5-20 m. Layer C is interpreted as claystone which has a range of resistivity values from 2-5000 ohm-m with depth variation in 10-20 m.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. Introduction
By using or sharing content from EKSPLORIUM - Buletin Pusat Pengembangan Bahan Galian Nuklir ("the Journal"), you agree to follow these Terms and Conditions. The Journal's content is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) license. If you do not agree to these terms, please do not use the content.
2. How You Can Use the Content
-
Share: You can copy, share, and distribute the work, but only for non-commercial purposes.
-
Adapt: You can change, remix, or build on the work, as long as it is for non-commercial purposes and you share it under the same license (CC BY-NC-SA).
3. Attribution (Giving Credit)
When you use or share the content, you must:
-
Give proper credit to the author(s).
-
Mention the title of the work and the journal name.
-
Provide a link to the license (https://creativecommons.org/licenses/by-nc-sa/4.0/).
-
Indicate if you made any changes to the work.
4. Non-Commercial Use
You cannot use the work to make money or for any commercial activities. For example, you cannot sell or use the content in advertisements.
If you want to use the content for commercial purposes, you need to get permission from the author(s) or the publisher.
5. ShareAlike
If you make changes to the content (like creating a new version or remixing it), you must share your new version under the same CC BY-NC-SA license.
6. Exclusions
Some materials in the Journal may have different licenses or restrictions, such as third-party content (like images or datasets). You must respect the rules for those materials.
7. No Warranty
The content is provided "as is." The authors and publisher do not guarantee that the content is error-free or suitable for any specific purpose. Use the content at your own risk.
8. Modifications and Withdrawal of Content
The publisher and authors can update or remove content at any time. If content is removed, the previous versions will still follow these terms.
9. Ethical Use
You must use the content ethically and follow all relevant laws. This includes properly citing the original authors and not misusing the content.
10. Legal Compliance
You are responsible for making sure your use of the content follows the laws of your country. If you believe content violates your rights, please contact us.
11. Changes to Terms
These Terms and Conditions may be updated from time to time. Any changes will be posted on the Journal's website.
12. Contact Information
For questions about these Terms or for permission to use content commercially, please contact us at:
-
Email: eksplorium@brin.go.id
-
Website: https://ejournal.brin.go.id/eksplorium
Conclusion
By using the content from EKSPLORIUM - Buletin Pusat Pengembangan Bahan Galian Nuklir, you agree to follow these Terms and Conditions and the CC BY-NC-SA 4.0 International License.
References
[1] HUMAS PI Puspitek, “Profil Pusat Penelitian Ilmu Pengetahuan dan Teknologi (Puspiptek).” .
[2] Marjiyono, H. Suntoko, A. Soehaimi, Yuliastuti, and H. Syaeful, “Kelas Soil Daerah Sekitar Rencana Tapak Reaktor Daya Eksperimental (RDE) Serpong dari Data Mikrotremor,” J. Pengemb. Energi Nukl., vol. 17, no. 1, pp. 57–66, 2015.
[3] Hurriyah and R. Jannah, “Analisis Struktur Lapisan Bawah Permukaan Menggunakan Metode Geolistrik (Studi Kasus pada Kampus III IAIN Imam Bonjol Padang di Sungai Bangek Kecamatan Koto Tangah),” J. Spasial, vol. 2, pp. 28–39, 2015.
[4] H. Syaeful, Sucipta, and I. A. Sadisun, “Studi Geologi Teknik Tapak Penyimpanan Akhir Limbah Radioaktif (LRA) Demo Plant Tipe NSD Kedalaman Menengah di Puspiptek, Serpong,” Eksplorium, vol. 35, no. 1, pp. 13–28, 2014.
[5] Suntoko and Sriyana, “Penentuan Kedalaman Batuan Dasar Menggunakan Microtremor Array Di Tapak RDE Serpong,” J. Pengemb. Energi Nukl., vol. 18, no. 2, pp. 87–92, 2016.
[6] A. P. Aizebeokhai and K. D. Oyeyemi, “The Use of The Multiple-Gradient Array for Geoelectrical Resistivity and Induced Polarization Imaging,” J. Appl. Geophys., vol. 111, pp. 364–376, 2014.
[7] T. Turkandi, Sidarto, D. A. Agustianto, and M. M. P. Hadiwidjoyo, Peta Geologi Lembar Jakarta dan Kepulauan Seribu. Bandung: Puslitbang Geologi, 1992.
[8] H. Suntoko and A. B. Wicaksono, “Identifikasi Patahan pada Batuan Sedimen Menggunakan Metode Geolistrik Konfigurasi Dipole-Dipole di Tapak RDE Serpong, Banten,” J. Pengemb. Energi Nukl., vol. 19, no. 2, pp. 81–88, 2017.
[9] Suntoko and Sriyana, “Identifikasi Patahan Menggunakan Analisis Data Deformasi Tanah di Tapak RDE Serpong Fault,” J. Pengemb. Energi Nukl., vol. 38, no. 2, pp. 99–108, 2017.
[10] W. M. Telford, L. P. Geldart, and R. E. Sheriff, Applied geophysics, 2nd ed. New York: Cambridge University Press, 1990.
[11] P. Kearey, M. Brooks, and I. Hill, An Introduction to Geophysical Exploration, 3rd ed. Malden: Blackwell Science Ltd, 2002.
[12] H. Suntoko and A. B. Wicaksono, “Identifikasi Patahan pada Batuan Sedimen Menggunakan Metode Geolistrik Konfigurasi Dipole-Dipole di Tapak RDE Serpong, Banten,” J. Pengemb. Energi Nukl., vol. 19, no. 2, pp. 81–88, 2017.
[13] M. H. Loke, Tutorial : 2-D and 3-D Electrical Imaging Surveys. Geotomo Software Inc., 2004.