Estimasi Sumber Daya Uranium Tipe Batupasir di Sektor Aloban, Sibolga, Tapanuli Tengah

Main Article Content

Roni Cahya Ciputra
Adi Gunawan Muhammad
Tyto Baskara Adimedha
Heri Syaeful

Abstract

Uranium explorations in Sibolga Area have been conducted since 1978 by BATAN and successfully result in sandstone-type uranium mineralization. Research related to uranium mineralization concept on sandstone and conglomerate at Aloban Sector, Sibolga has been conducted through 22 boreholes data which resulted in the geological section, anomaly distribution along with radiometry counting and geochemistry data. This research objective is to obtain uranium resources in Aloban Sector by correlating radiometry counting and geochemical data from previous research by using a geostatistic approach. Geostatistical processing using SGeMS software shows a correlation coefficient of 0.5 so that the radiometry and geochemical data are interpreted to have a good correlation. Uranium Resources estimation was measured on Conglomerate I and Sandstone I units which are considered to have thick and wide mineralization distribution. The average uranium grade for Conglomerate I and Sandstone I units are 173.05 ppm U and 161.54 ppm U respectively. Uranium resource estimation at Aloban Sector is 415 tons as inferred resources.  


 


 


 

Article Details

How to Cite
Ciputra, R. C., Muhammad, A. G., Adimedha, T. B., & Syaeful, H. (2019). Estimasi Sumber Daya Uranium Tipe Batupasir di Sektor Aloban, Sibolga, Tapanuli Tengah. EKSPLORIUM, 40(1), 1–10. https://doi.org/10.17146/eksplorium.2019.40.1.5360
Section
##section.default.title##

References

[1] PTBGN BATAN, “Laporan Prospeksi Pendahuluan Daerah Sibolga,” Jakarta, 1978.

[2] M. Seredkin, A. Zabolotsky, and G. Jeffress, “In Situ Recovery, an Alternative to Conventional Methods of Mining: Exploration, Resource Estimation, Environmental Issues, Project Evaluation and Economics,” Ore Geol. Rev., vol. 79, pp. 500–514, 2016.

[3] M. Masdja, S. Sastrowihardjo, and P. Tampubolon, “Uranium Mineralisation in Sibolga Formation at Aloban, North Sumatera,” Proceeding Semin. Uranium Explor. Geol. Extr., pp. 123–144, 1989.

[4] International Atomic Energy Agency, IAEA Tecdoc Series: Geological Classification of Uranium Deposits and Description of Selected Examples. Vienna: International Atomic Energy Agency, 2018.

[5] S. Thakur, B. Chudasama, and A. Porwal, “Global grade and tonnage modelling of uranium deposits,” in Quantitative and Spatial Evaluations of Undiscovered Uranium Resources, Vienna: International Atomic Energy Agency, 2018, pp. 218–262.

[6] I. G. Sukadana and H. Syaeful, “Evaluasi Sistem Pengendapan Uranium pada Batuan Sedimen Formasi Sibolga , Tapanuli Tengah,” Eksplorium, vol. 37, no. 2, pp. 125–138, 2016.

[7] J. A. Aspde, W. Kartawa, D. T. Aldiss, A. Djunuddin, D. Diatma, M. C. G. Clarke, R. Whandoyo, and H. Harahap, “Peta Geologi Lembar Padang Sidempuan dan Sibolga, Sumatera,” Bandung, 1992.

[8] E. Usman, “The Geochemical Characteristic of Major Element of Granitoid of Natuna , Singkep , Bangka and Sibolga Karakteristik Geokimia Unsur Utama Granitoid Natuna , Singkep , Bangka dan Sibolga,” Bull. Mar. Geol., vol. 30, no. 1, pp. 45–54, 2015.

[9] C. S. Hutchinson, “Tectonic evolution of Southeast Asia,” Bull. Geol. Soc. Malaysia, vol. 60, no. December, pp. 1–18, 2014.

[10] I. Setiawan, R. Takahashi, and A. Imai, “Petrochemistry of Granitoids in Sibolga and its Surrounding Areas, North Sumatra, Indonesia,” Resour. Geol., vol. 67, no. 3, pp. 254–278, 2017.

[11] E. L. Advokaat, M. L. M. Bongers, A. Rudyawan, M. K. BouDagher-Fadel, C. G. Langereis, and D. J. J. van Hinsbergen, “Early Cretaceous Origin of the Woyla Arc (Sumatra, Indonesia) on the Australian Plate,” Earth Planet. Sci. Lett., vol. 498, pp. 348–361, 2018.

[12] R. Sukhyar, A. D. Wirakusumah, D. Sukarna, N. Suwarna, Surono, E. B. Santoso, N. Buyung, and T. O. Simandjuntak, “Sedimentary Basin Map of Indonesia Based on Gravity and Geological Data,” Bandung, 2009.

[13] A. G. Muhammad, H. Syaeful, and P. Widito, “Survey Geolistrik Tahanan Jenis di Daerah Aloban dan Sekitarnya, Sibolga, Sumatera Utara,” Eksplorium, vol. 30, no. 152, pp. 45–61, 2009.

[14] S. M. Hall, M. J. Mihalasky, K. R. Tureck, J. M. Hammarstrom, and M. T. Hannon, “Genetic and Grade and Tonnage Models for Sandstone-Hosted Roll-Type Uranium Deposits, Texas Coastal Plain, USA,” Ore Geol. Rev., vol. 80, pp. 716–753, 2017.

[15] S. Jaireth, I. C. Roach, E. Bastrakov, and S. Liu, “Basin-Related Uranium Mineral Systems in Australia: A Review of Critical Features,” Ore Geol. Rev., vol. 76, pp. 360–394, 2016.

[16] N. J. Cook, R. Bluck, C. Brown, C. L. Ciobanu, and U. Domnick, “Petrography and Geochemistry of Granitoids from the Samphire Pluton, South Australia: Implications for Uranium Mineralisation in Overlying Sediments,” Lithos, vol. 300–301, pp. 1–19, 2017.

[17] O. Asghari, S. Sheikhmohammadi, M. Abedi, and G. A. Norouzi, “Multivariate Geostatistics Based on a Model of Geo-Electrical Properties for Copper Grade Estimation : a Case Study in Seridune, Iran,” Bull. di Geofis. Teor. ed Appl., vol. 57, no. March, pp. 43–58, 2016.

[18] Badan Standarisasi Nasional, Standar Nasional Indonesia 4726:2011 Pedoman Pelaporan, Sumber Daya, dan Cadangan Mineral. Jakarta, 2011.