Spektroskopi Reflektansi Sampel Tanah dan Batuan yang Mengandung Mineral Pembawa Unsur Tanah Jarang dan Radioaktif
Main Article Content
Abstract
Reflectance spectroscopy is one of the nondestructive methods of mineral identification and is one of the basic principles in the remote sensing analysis using optical sensors. This research aimed at applying reflectance spectroscopy at 350–2,500 nm wavelength range for samples containing rare earth elements (REE) and radioactive minerals. Samples were taken from several locations in South Bangka and Mamuju that had previously been identified as potential location of REE and radioactive-bearing minerals. Reflectance data shows that there are absorption characteristics for REE-bearing minerals; monazite, zircon, and xenotime minerals especially from tailings and tin ore concentrate for the samples from South Bangka. The key wavelengths are specifically in the visible-near infrared range (VNIR; 400–1300 nm). For the samples from Mamuju, which is known as radioactive mineral prospecting areas, spectral characteristics provide information that there are spectral signatures in the shortwave infrared range (1,300–2,500 nm). The results of major mineral interpretations include clay minerals, sulfates, NH4 species, and other minerals containing Al-OH. However, some samples at the VNIR wavelength identified as iron oxide/hydroxide minerals. It is hoped that these results can be useful for REE and radioactive exploration mapping using remote sensing methods.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. Introduction
By using or sharing content from EKSPLORIUM - Buletin Pusat Pengembangan Bahan Galian Nuklir ("the Journal"), you agree to follow these Terms and Conditions. The Journal's content is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) license. If you do not agree to these terms, please do not use the content.
2. How You Can Use the Content
-
Share: You can copy, share, and distribute the work, but only for non-commercial purposes.
-
Adapt: You can change, remix, or build on the work, as long as it is for non-commercial purposes and you share it under the same license (CC BY-NC-SA).
3. Attribution (Giving Credit)
When you use or share the content, you must:
-
Give proper credit to the author(s).
-
Mention the title of the work and the journal name.
-
Provide a link to the license (https://creativecommons.org/licenses/by-nc-sa/4.0/).
-
Indicate if you made any changes to the work.
4. Non-Commercial Use
You cannot use the work to make money or for any commercial activities. For example, you cannot sell or use the content in advertisements.
If you want to use the content for commercial purposes, you need to get permission from the author(s) or the publisher.
5. ShareAlike
If you make changes to the content (like creating a new version or remixing it), you must share your new version under the same CC BY-NC-SA license.
6. Exclusions
Some materials in the Journal may have different licenses or restrictions, such as third-party content (like images or datasets). You must respect the rules for those materials.
7. No Warranty
The content is provided "as is." The authors and publisher do not guarantee that the content is error-free or suitable for any specific purpose. Use the content at your own risk.
8. Modifications and Withdrawal of Content
The publisher and authors can update or remove content at any time. If content is removed, the previous versions will still follow these terms.
9. Ethical Use
You must use the content ethically and follow all relevant laws. This includes properly citing the original authors and not misusing the content.
10. Legal Compliance
You are responsible for making sure your use of the content follows the laws of your country. If you believe content violates your rights, please contact us.
11. Changes to Terms
These Terms and Conditions may be updated from time to time. Any changes will be posted on the Journal's website.
12. Contact Information
For questions about these Terms or for permission to use content commercially, please contact us at:
-
Email: eksplorium@brin.go.id
-
Website: https://ejournal.brin.go.id/eksplorium
Conclusion
By using the content from EKSPLORIUM - Buletin Pusat Pengembangan Bahan Galian Nuklir, you agree to follow these Terms and Conditions and the CC BY-NC-SA 4.0 International License.
References
[1] A. B. Pour, M. Hashim, and J. van Genderen, “Detection of hydrothermal alteration zones in a tropical region using satellite remote sensing data: Bau goldfield, Sarawak, Malaysia,” Ore Geol. Rev., vol. 54, pp. 181–196, 2013.
[2] F. F. Sabins, “Remote sensing for mineral exploration,” Ore Geol. Rev., vol. 14, pp. 157–183, 1999.
[3] F. D. van der Meer, H. M. van der Werff, F. J. van Ruitenbeek, C. A. Hecker, W. H. Bakker, M. F. Noomen, M. van der Meijde, E. J. M. Carranza, J. B. de Smeth, and T. Woldai, “Multi- and hyperspectral geologic remote sensing: A review,” Int. J. Appl. Earth Obs. Geoinf., vol. 14, no. 1, pp. 112–128, 2012.
[4] J. C. Mars and L. C. Rowan, “Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals,” Remote Sens. Environ., vol. 114, no. 9, pp. 2011–2025, 2010.
[5] I. Purwadi, H. van der Werff, and C. Lievens, “Reflectance spectroscopy and geochemical analysis of rare earth element-bearing tailings: A case study of two abandoned tin mine sites in Bangka Island, Indonesia,” Int. J. Appl. Earth Obs. Geoinf., vol. 74, pp. 239–247, 2019.
[6] L. E. Vicente and C. R. de Souza Filho, “Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data,” Remote Sens. Environ., vol. 115, no. 8, pp. 1824–1836, 2011.
[7] P. Hauff, “An overview of VIS-NIR-SWIR field spectroscopy as applied to precious metals exploration,” Arvada, Color. Spectr. Int. Inc, vol. 80001, pp. 303–403, 2008.
[8] G. R. Hunt, “Spectral signatures of particulate minerals in the visible and near infrared,” Geophysics, vol. 42, no. 3, pp. 501–513, Apr. 1977.
[9] R. N. Clark, T. V. V King, M. Klejwa, G. A. Swayze, and N. Vergo, “High spectral resolution reflectance spectroscopy of minerals,” J. Geophys. Res. Solid Earth, vol. 95, no. B8, pp. 12653–12680, Aug. 1990.
[10] P. E. Johnson, M. O. Smith, and J. B. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. Planets, vol. 97, no. E2, pp. 2649–2657, Feb. 1992.
[11] S. Lolon and F. Rahman, “Overview of rare earth elements in Indonesia,” Coal Asia, 2014.
[12] B. Soetopo, R. Witjahyati, and Y. Wusana, “Sintesa geologi dan pemineralan uranium Sektor Rabau Hulu, Kalan, Kalimantan Barat,” in Seminar Geologi Nuklir dan Sumberdaya Tambang Tahun 2004, 2004, pp. 85–99.
[13] S. J. Suprapto, “Tinjauan tentang unsur tanah jarang,” Bul. Sumber Daya Geol., vol. 4, no. 1, pp. 36–47, 2009.
[14] H. Syaeful, I. G. Sukadana, and A. Sumaryanto, “Radiometric Mapping for Naturally Occurring Radioactive Materials (NORM) assessment in Mamuju, West Sulawesi,” Atom Indones., vol. 40, no. 1, p. 35, 2014.
[15] F. D. Indrastomo, I. G. Sukadana, and Suharji, “Identifikasi pola struktur geologi sebagai pengontrol sebaran mineral radioaktif berdasarkan kelurusan pada citra Landsat-8 di Mamuju, Sulawesi Barat,” Eksplorium, vol. 38, no. 2, pp. 71–80, 2017.
[16] F. D. Indrastomo, I. G. Sukadana, A. Saepuloh, A. H. Harsolumakso, and D. Kamajati, “Interpretasi vulkanostratigrafi daerah Mamuju berdasarkan analisis citra Landsat-8,” Eksplorium, vol. 36, no. 2, pp. 71–88, 2015.
[17] M. I. J. Putra and Sobirin, “Mapping apatite-ilmenite rare earth element mineralized zone using fuzzy logic method in Sijuk District, Belitung,” Int. J. Remote Sens. Earth Sci., vol. 15, no. 1, pp. 1–14, 2018.
[18] Wikarno, D. A. D. Suyatna, and S. Sukardi, “Granitoids of Sumatra and the Tin Islands BT - Geology of Tin Deposits in Asia and the Pacific,” 1988, pp. 571–589.
[19] J. A. Katili, “Structure and age of the indonesian tin belt with special reference to Bangka,” Tectonophysics, vol. 4, no. 4, pp. 403–418, 1967.
[20] F. S. Mu’awanah, B. Priadi, Widodo, I. G. Sukadana, and R. Ardiansyah, “Uranium mobility on active stream sediment in Mamuju area, West Sulawesi,” Eksplorium, vol. 39, no. 2, pp. 95–104, 2018.
[21] A. N. H. Hede, Syafrizal, and S. Gunawan, “Assessment of granitoid-related mineralization using visible near-infrared and shortwave infrared reflectance spectroscopy,” in International Symposium on Earth Science and Technology 2018, 2018, pp. 144–149.
[22] I. G. Sukadana, F. D. Indrastomo, and Ngadenin, “Distribution of rock alteration based on Th/U ratio in Tapalang, Mamuju, West Sulawesi,” Ris. Geo. Tam, vol. 28 no. 2, pp. 141–155, 2018.
[23] I. G. Sukadana, A. Harijoko, and L. D. Setijadji, “Tectonic setting of Adang Volcanic Complex in Mamuju Region, West Sulawesi Province,” Eksplorium, vol. 36, no. 1, pp. 31–44, 2015.
[24] Syafrizal, A. N. H. Hede, and A. O. Nabilla, “Using grain mineralogy to observe the rare earth element content of alluvial tin on Bangka Island, Indonesia,” in International Symposium on Earth Science and Technology 2018, 2018, pp. 605–608.
[25] D. J. Turner, “Reflectance spectroscopy and imaging spectroscopy of rare earth element-bearing mineral and rock samples,” The University of Columbia, 2015.
[26] J. W. Plaue, G. L. Klunder, I. D. Hutcheon, and K. R. Czerwinski, “Near infrared reflectance spectroscopy as a process signature in uranium oxides,” J. Radioanal. Nucl. Chem., vol. 296, no. 1, pp. 551–555, 2013.