Analisis Kualitas dan Perkuatan Terowongan Eksplorasi Uranium Eko Remaja Kalan, Kalimantan Barat menggunakan Metode RMR (Rock Mass Rating)
Main Article Content
Abstract
Tunnel for Exploration of Uranium Eko Remaja Kalan (TEURK) in West Kalimantan, built-in 1980, is one of the uranium deposit research facilities in Indonesia. The tunnel penetrated Eko Remaja Hill along 618 m, from Remaja to TRK-7 access. Uranium mineralization in this area controlled by dense stockwork veins on metasilt and metasandstone rocks. The high-dense geological structures create some weak zones in the tunnel. These zones are potentially causing rocks and soil slides. Temporary supports made of wood-piles were installed in these zones to support the tunnel. Currently, these piles are not capable at the tunnel, so that rocks and soil slides occurred inside the tunnel. The research aimed to determine the quality of actual rock mass and determine the appropriate type of reinforcement to keep the tunnel safe. Schmidt hammer and scanline surveys on the unsupported zone (50–297 m and 355–538 m depth) carried out to collect the classification parameter data of Rock Mass Rating (RMR). The measurement result shows that the rock mass of TEURK on the depth has an RMR value of 52–71 (fair-good). Reinforcement recommendations for the tunnel are rock bolts and conventional shotcretes installation.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. Introduction
By using or sharing content from EKSPLORIUM - Buletin Pusat Pengembangan Bahan Galian Nuklir ("the Journal"), you agree to follow these Terms and Conditions. The Journal's content is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) license. If you do not agree to these terms, please do not use the content.
2. How You Can Use the Content
-
Share: You can copy, share, and distribute the work, but only for non-commercial purposes.
-
Adapt: You can change, remix, or build on the work, as long as it is for non-commercial purposes and you share it under the same license (CC BY-NC-SA).
3. Attribution (Giving Credit)
When you use or share the content, you must:
-
Give proper credit to the author(s).
-
Mention the title of the work and the journal name.
-
Provide a link to the license (https://creativecommons.org/licenses/by-nc-sa/4.0/).
-
Indicate if you made any changes to the work.
4. Non-Commercial Use
You cannot use the work to make money or for any commercial activities. For example, you cannot sell or use the content in advertisements.
If you want to use the content for commercial purposes, you need to get permission from the author(s) or the publisher.
5. ShareAlike
If you make changes to the content (like creating a new version or remixing it), you must share your new version under the same CC BY-NC-SA license.
6. Exclusions
Some materials in the Journal may have different licenses or restrictions, such as third-party content (like images or datasets). You must respect the rules for those materials.
7. No Warranty
The content is provided "as is." The authors and publisher do not guarantee that the content is error-free or suitable for any specific purpose. Use the content at your own risk.
8. Modifications and Withdrawal of Content
The publisher and authors can update or remove content at any time. If content is removed, the previous versions will still follow these terms.
9. Ethical Use
You must use the content ethically and follow all relevant laws. This includes properly citing the original authors and not misusing the content.
10. Legal Compliance
You are responsible for making sure your use of the content follows the laws of your country. If you believe content violates your rights, please contact us.
11. Changes to Terms
These Terms and Conditions may be updated from time to time. Any changes will be posted on the Journal's website.
12. Contact Information
For questions about these Terms or for permission to use content commercially, please contact us at:
-
Email: eksplorium@brin.go.id
-
Website: https://ejournal.brin.go.id/eksplorium
Conclusion
By using the content from EKSPLORIUM - Buletin Pusat Pengembangan Bahan Galian Nuklir, you agree to follow these Terms and Conditions and the CC BY-NC-SA 4.0 International License.
References
[1] BAKOSURTANAL, “Peta Rupabumi Lembar Nanga Pinoh, Kalimantan,” 2004.
[2] H. Syaeful, Suharji, dan A. Sumaryanto, “Pemodelan Geologi dan Estimasi Sumberdaya Uranium di Sektor Lemajung, Kalan, Kalimantan Barat,” Pros. Semin. Nas. Teknol. Energi Nukl., pp. 329–342, 2014.
[3] A. Zaenal, “Beton Cetak Bertulang sebagai Alternatif Pengganti Kayu Penyangga di Terowongan Eksplorasi U Eko Remaja Kal-Bar,” dalam Prosiding Seminar Geologi Nuklir dan Sumberdaya Tambang, 2006.
[4] H. S. Karyono, “Analisis Kontrol Tektonik pada Vein Mineralisasi di Bukit Eko, Kalan, Kalimantan Barat,” dalam Prosiding Pertemuan Ilmiah Tahunan ke-2 IAGI, 1991, pp. 115–128.
[5] Amiruddin dan D. S. Trail, “Peta Geologi Lembar Nanga Pinoh Kalimantan Skala 1:250.000,” Bandung, 1993.
[6] S. Tjokrokardono, B. Soetopo, L. Subiantoro, dan K. S. Widana, “Geologi dan Mineralisasi Uranium Kalan, Kalimantan Barat,” dalam Kumpulan Laporan Hasil Penelitian Tahun 2005, Jakarta: BATAN, 2005, pp. 27–52.
[7] D. Kamajati, H. Syaeful, dan M. Berliana Garwan, “Evaluasi Massa Batuan Terowongan Eksplorasi Uranium Eko-Remaja, Kalan, Kalimantan Barat,” Eksplorium, vol. 37, no. 2, pp. 89–100, 2016.
[8] S. Tjokrokardono, D. Soetarno, M. S. Sapardi, L. Subiantoro, dan R. Witjahyati, “Studi Geologi Regional dan Mineralisasi Uranium di Pegunungan Schwanner Kalimantan Barat dan Tengah,” dalam Prosiding Seminar Geologi Nuklir dan Sumberdaya Tambang, 2004, pp. 64–84.
[9] H. S. Karyono dan M. Ruhland, “Use of Multiscalar Processing of Remotely Sensed Data in Kalan Fracturation Networks West Kalimantan, Indonesie for Future Mineralization Research,” ISPRS J. Photogrametry Remote Sens., vol. 45, pp. 428–441, 1990.
[10] A. G. Muhammad dan F. D. Indrastomo, “Validitas dan Reliabilitas Data Estimasi Kadar Uranium Sektor Lembah Hitam, Kalan, Kalimantan Barat,” Eksplorium, vol. 40, no. 2, pp. 75–88, 2019, doi: 10.17146/eksplorium. 2019.40.2.5672.
[11] Z. T. Bieniawski, Engineering Rock Mass Classification: A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering. 1989.
[12] F. Ferrari, T. Apuani, dan G. Giani, “Rock Mass Rating Spatial Estimation by Geostatistical Analysis,” Int. J. Rock Mech. Min. Sci., vol. 70, pp. 162–176, 2014.
[13] M. Akin, “Slope Stability Problems and Back Analysis in Heavily Jointed Rock Mass: A Case Study from Manisa, Turkey,” Rock Mech. Rock Eng., vol. 46, pp. 359–371, 2013.
[14] Purwanto, et al., “Fundamental Study on Support Systemat Cibaliung Underground Gold Mine, Indonesia,” Procedia Earth Planet. Sci., vol. 6, pp. 419–425, 2013.
[15] V. M. Khatik dan A. K. Nandi, “A generic method for rock mass classification,” Rock Mech. Geotech. Eng., vol. 10, no. 1, pp. 102–116, 2018.
[16] A. Lateef, “Most used rock mass classifications for underground opening,” Am. J. Eng. Appl. Sci., pp. 403–411, May 2010.
[17] Z. T. Bieniawski, “Classification of rock masses for engineering: The RMR system and future trends, comprehensive rock engineering,” vol. 3, pp. 553–574, 1993.
[18] S. Muntazir Abbas dan H. Konietzky, “Rock mass classification systems,” Introd. to Geomech., pp. 1–48, 2017.
[19] M. Mohammadi dan M. Farouq, “Modification of rock mass rating system : Interbedding of strong and weak rock layers,” J. Rock Mech. Geotech. Eng., vol. 9, no. 6, pp. 1165–1170, 2017.
[20] N. Bilgin, H. Copur, dan C. Balci, “Use of Schmidt Hammer with Special Reference to Strength Reduction Factor Related to Cleat Presence in A Coal Mine,” Int. J. Rock Mech. Min. Sci., vol. 84, pp. 25–33, 2016.
[21] B. F. Ogunbayo, C. O. Aigbavboa, dan O. I. Akinradewo, “Analysis of Compressive Strength of Existing Higher Educational Institutions (HEI) Concrete Column using a Schmidt Rebound Hammer,” J. Phys. Conf. Ser., vol. 1378, no. 3, 2019.
[22] A. Brencich, G. Cassini, D. Pera, dan G. Riotto, “Calibration and Reliability of the Rebound (Schmidt) Hammer Test,” Civ. Eng. Archit., vol. 1, no. 3, pp. 66–78, 2013.
[23] I. Yilmaz dan H. Sendir, “Correlation of Schmidt hardness with unconfined compressive strength and Young’s modulus in gypsum from Sivas (Turkey),” Eng. Geol., vol. 66, no. 3, pp. 211–219, 2002.
[24] H. I. Chamine, M. J. Afonso, L. Ramos, dan R. Pinheiro, “Scanline Sampling Techniques for Rock Engineering Surveys: Insights from Intrinsic Geologic Variability and Uncertainty,” Eng. Geol. Soc. Territ., vol. 6, pp. 357–361, 2015.
[25] G. A. J. Kartini, I. Gumilar, B. Brahmantyo, B. Bramanto, dan N. Haerani, “Hasil Pengukuran Terrestrial Laser Scanner untuk Deteksi Rekahan dalam Kaitannya dengan Analisis Struktur Geologi (Studi Kasus: Tebing Citatah 125, Jawa Barat),” J. Lingkung. dan Bencana Geol., vol. 9, pp. 107–117, 2018.
[26] S. K. Haldar, Mineral Exploration: Principles and Applications, 2nd ed. Elsevier Ltd, 2018.
[27] L. Zhang, “Determination and applications of rock quality designation (RQD),” J. Rock Mech. Geotech. Eng., vol. 8, no. 3, pp. 389–397, 2016.
[28] S. D. Priest dan J. A. Hudson, “Discontinuity spacings in rock,” Int. J. Rock Mech. Min. Sci., vol. 13, pp. 135–148, 1976.
[29] Z. T. Bieniawski, “The geomechanics classification in rock engineering applications,” dalam Proceedings of the 4th Congress of the International Society for Rock Mechanics, 1979, pp. 41–48.
[30] S. Dochez et al., “Influence of Water on Rock Discontinuities and Stability of Rock Mass,” Procedia Earth Planet. Sci., vol. 7, pp. 219–222, 2013.
[31] B. Celada, I. Tardáguila, P. Varona, A. Rodríguez, dan Z. T. Bieniawski, “Innovating Tunnel Design by an Improved Experience-based RMR System,” Proc. World Tunn. Congr. 2014 – Tunnels a better Life, pp. 1–9, 2014.
[32] Z. T. Bieniawski, Rock mechanics design in mining and tunnelling. Rotterdam, 1984.
[33] A. R. Lowson dan Z. T. Bieniawski, “Critical Assessment of RMR-based Tunnel Design Practices: A Practical Engineer’s Approach,” Rapid Excav. Tunneling Conf., June, 2013.
[34] B. Singh dan R. K. Goel, Engineering Rock Mass Classification: Tunneling, Foundations, and Landslides, 1st ed. Butterworth-Heinemann, 2011.
[35] H. Rehman, A. M. Naji, J. J. Kim, dan H. K. Yoo, “Empirical Evaluation of Rock Mass Rating and Tunneling Quality Index System for Tunnel Support Design,” Appl. Sci., vol. 8, 2018.