Seismisitas di Wilayah Jawa Tengah dan Sekitarnya Berdasarkan Hasil Relokasi Hiposenter dari Empat Jaringan Seismik Menggunakan Model Kecepatan 3-D
Main Article Content
Abstract
Hypocenter relocation is a method used to get precise earthquake parameters. They will be useful for an advanced tectonic study like seismic hazard assessment in an area. The hypocenter relocation using a 3-D velocity model will theoretically obtain better results than a 1-D velocity model because the earth subsurface model is closed with a 3-D model. Some 767 earthquakes recorded by DOMERAPI, MERAMEX, BMKG, and BPPTKG networks used in this research. They were relocated by using a 3-D velocity model and analyzed for seismotectonic study in Central Java area and its surroundings. The result of hypocenter relocation using a 3-D velocity model is successfully detecting some tectonic features more clearly like columnar structure related to the backthrust structure at the south of Kebumen. The west-east vertical cross-section crossing the Opak fault indicates the dip of the fault plane is directing to the east. This study could not identify the double seismic zone, which was detected by the previous research. Some volcano-tectonic (VT) earthquakes related to the shallow magma activity of Mount Merapi also are detected clearly in this study.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. Introduction
By using or sharing content from EKSPLORIUM - Buletin Pusat Pengembangan Bahan Galian Nuklir ("the Journal"), you agree to follow these Terms and Conditions. The Journal's content is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) license. If you do not agree to these terms, please do not use the content.
2. How You Can Use the Content
-
Share: You can copy, share, and distribute the work, but only for non-commercial purposes.
-
Adapt: You can change, remix, or build on the work, as long as it is for non-commercial purposes and you share it under the same license (CC BY-NC-SA).
3. Attribution (Giving Credit)
When you use or share the content, you must:
-
Give proper credit to the author(s).
-
Mention the title of the work and the journal name.
-
Provide a link to the license (https://creativecommons.org/licenses/by-nc-sa/4.0/).
-
Indicate if you made any changes to the work.
4. Non-Commercial Use
You cannot use the work to make money or for any commercial activities. For example, you cannot sell or use the content in advertisements.
If you want to use the content for commercial purposes, you need to get permission from the author(s) or the publisher.
5. ShareAlike
If you make changes to the content (like creating a new version or remixing it), you must share your new version under the same CC BY-NC-SA license.
6. Exclusions
Some materials in the Journal may have different licenses or restrictions, such as third-party content (like images or datasets). You must respect the rules for those materials.
7. No Warranty
The content is provided "as is." The authors and publisher do not guarantee that the content is error-free or suitable for any specific purpose. Use the content at your own risk.
8. Modifications and Withdrawal of Content
The publisher and authors can update or remove content at any time. If content is removed, the previous versions will still follow these terms.
9. Ethical Use
You must use the content ethically and follow all relevant laws. This includes properly citing the original authors and not misusing the content.
10. Legal Compliance
You are responsible for making sure your use of the content follows the laws of your country. If you believe content violates your rights, please contact us.
11. Changes to Terms
These Terms and Conditions may be updated from time to time. Any changes will be posted on the Journal's website.
12. Contact Information
For questions about these Terms or for permission to use content commercially, please contact us at:
-
Email: eksplorium@brin.go.id
-
Website: https://ejournal.brin.go.id/eksplorium
Conclusion
By using the content from EKSPLORIUM - Buletin Pusat Pengembangan Bahan Galian Nuklir, you agree to follow these Terms and Conditions and the CC BY-NC-SA 4.0 International License.
References
[1] A. P. Cahyaningrum, A. D. Nugraha, dan N. T. Puspito, “Earthquake Hypocenter Relocation Using Double Difference Method in East Java and Surrounding Areas,” in AIP Conference Proceedings, vol. 1658, p. 030021, 2015.
[2] A. D. Nugraha, H. A. Shiddiqi, S. Widiyantoro, C. H. Thurber, J. D. Pesicek, H. Zhang, S. H. Wiyono, M. Ramdhan, dan M. Irsyam, “Hypocenter Relocation along the Sunda Arc in Indonesia, Using a 3D Seismic-Velocity Model,” Seismological Research Letters, vol. 89, no. 2A, pp. 603–612, 2018.
[3] M. Ramdhan dan A. D. Nugraha, “Study of Seismicity Around Toba Area Based on Relocation Hypocenter Result from BMKG Catalogue” in Padjadjaran International Physics Symposium 2013 (PIPS-2013): Contribution of Physics on Environmental and Energy Conservations, vol. 1554, pp. 242–244, 2013.
[4] A. Sabtaji dan A. D. Nugraha, “1-D Seismic Velocity Model and Hypocenter Relocation Using Double Difference Method Around West Papua Region,” in AIP Conference Proceedings, vol. 1658, 2015.
[5] I. Koulakov, M. Bohm, G. Asch, B. ‐G. Lühr, A. Manzanares, K. S. Brotopuspito, P. Fauzi, M. A. Purbawinata, N. T. Puspito, A. Ratdomopurbo, H. Kopp, W. Rabbel, E. Shevkunova, “P and S Velocity Structure of the Crust and The Upper Mantle Beneath Central Java from Local Tomography Inversion,” Journal of Geophysical Research: Solid Earth, vol. 112, no. B8, 2007.
[6] D. Wagner, I. Koulakov, W. Rabbel, B. -G. Luehr, A. Wittwer, H. Kopp, M. Bohm, G. Asch, dan MERAMEX Scientists, “Joint Inversion of Active and Passive Seismic Data in Central Java,” Geophysical Journal International, vol. 170, no. 2, pp. 923–932, 2007.
[7] S. Rohadi, S. Widiyantoro, A. Nugraha, dan Masturyono, “Tomographic imaging of P and S Wave Velocity Structure Beneath Central Java, Indonesia: Joint Inversion of The MERAMEX and MCGA Earthquake Data,” International Journal of Tomography & SimulationTM, vol. 24, no. 3, pp. 1–16, 2013.
[8] A. Ratdomopurbo dan G. Poupinet, “An Overview of The Seismicity of Merapi Volcano (Java, Indonesia), 1983–1994,” Journal of Volcanology and Geothermal Research, vol. 100, no. 1–4, pp. 193–214, Jul. 2000, doi: 10.1016/S0377-0273(00)00137-2.
[9] Surono dkk., “The 2010 Explosive Eruption of Java’s Merapi Volcano—A ‘100-year’ Event,” Journal of Volcanology and Geothermal Research, vol. 241–242, pp. 121–135, Oct. 2012, doi: 10.1016/j.jvolgeores.2012.06.018.
[10] C. Haberland, M. Bohm, dan G. Asch, “Accretionary Nature of The Crust of Central and East Java (Indonesia) Revealed by Local Earthquake Travel-time Tomography,” Journal of Asian Earth Sciences, vol. 96, pp. 287–295, Dec. 2014, doi: 10.1016/j.jseaes.2014.09.019.
[11] S. Widiyantoro, M. Ramdhan, J. -P. Métaxian, P. R. Cummins, C. Martel, S. Erdmann, A. D. Nugraha, A. Budi-Santoso, A. Laurin dan A. A. Fahmi, “Seismic Imaging and Petrology Explain Highly Explosive Eruptions of Merapi Volcano, Indonesia,” Scientific Reports, vol. 8, no. 1, p. 13656, Sep. 2018, doi: 10.1038/s41598-018-31293-w.
[12] M. Ramdhan, S. Widiyantoro, A. D. Nugraha, J. -P. Métaxian, N. Rawlinson, A. Saepuloh, S. Kristyawan, A. S. Sembiring, A. B. Santoso, A. Laurin, dan A. A. Fahmi., “Detailed Seismic Imaging of Merapi Volcano, Indonesia, from Local Earthquake Travel-time Tomography,” Journal of Asian Earth Sciences, vol. 177, pp. 134–145, Jun. 2019, doi: 10.1016/j.jseaes.2019.03.018.
[13] M. Ramdhan, S. Kristyawan, A. S. Sembiring, D. Daryono, dan P. Priyobudi, “Struktur Kecepatan Seismik di Bawah Gunung Merapi dan Sekitarnya Berdasarkan Studi Tomografi Seismik Waktu Tempuh,” RISET Geologi dan Pertambangan, vol. 29, no. 2, Dec. 2019, doi: 10.14203/risetgeotam2019.v29.1047.
[14] M. Ramdhan, S. Widiyantoro, A. D. Nugraha, J. -P Métaxian, A. Saepuloh, S. Kristyawan, A. S. Sembiring, A. B. Santoso, A. Laurin, dan A. A. Fahmi, “Relocation of Hypocenters from DOMERAPI and BMKG Networks: A Preliminary Result from DOMERAPI Project,” Earthquake Science, vol. 30, no. 2, pp. 67–79, 2017.
[15] M. Ramdhan, A. D. Nugraha, S. Widiyantoro, J.-P. Métaxian, dan A. A. Valencia, “Earthquake Location Determination Using Data from DOMERAPI and BMKG Seismic Networks: A Preliminary Result of DOMERAPI Project,” in 4th International Symposium on Earthquake and Disaster Mitigation 2014 (ISEDM 2014), 2015, vol. 1658, p. 030007.
[16] F. Waldhauser dan W. L. Ellsworth, “A double-difference Earthquake Location Algorithm: Method and Application to The Northern Hayward Fault, California,” Bulletin of the Seismological Society of America, vol. 90, no. 6, pp. 1353–1368, 2000.
[17] F. Waldhauser, “HypoDD: A Computer Program to Compute Double-difference Earthquake Location,” US Geol. Surv. Openfile report, pp. 01–113, 2001.
[18] J. R. Evans, D. Eberhart-Phillips, dan C. Thurber, “User’s Manual for SIMULPS12 for Imaging Vp and Vp/Vs; a Derivative of The" Thurber" tomographic inversion SIMUL3 for local earthquakes and explosions,” US Geological Survey, 1994.
[19] C. Thurber, Local Earthquake Tomography: Velocities and Vp/Vs—theory in Seismic Tomography: Theory and Practice pp. 563–583 eds Iyer HM, Hirahara K. Chapman & Hall London, 1993.
[20] C. Thurber dan D. Eberhart-Phillips, “Local Earthquake Tomography with Flexible Gridding,” Computers & Geosciences, vol. 25, no. 7, pp. 809–818, 1999.
[21] C. C. Paige dan M. A. Saunders, “LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares,” ACM Transactions on Mathematical Software, vol. 8, no. 1, pp. 43–71, 1982.
[22] J. Pesicek, C. Thurber, H. Zhang, H. DeShon, E. Engdahl, dan S. Widiyantoro, “Teleseismic Double-difference Relocation of Earthquakes Along the Sumatra-Andaman Subduction Zone Using a 3-D Model,” Journal of Geophysical Research: Solid Earth, vol. 115, no. B10, 2010.
[23] G. P. Hayes, D. J. Wald, dan R. L. Johnson, “Slab1. 0: A three-dimensional Model of Global Subduction Zone Geometries,” Journal of Geophysical Research: Solid Earth, vol. 117, no. B1, 2012.
[24] Global CMT, “Global Centroid Moment Tensor Project.” http://www.globalcmt.org/ (accessed Nov. 07, 2016).
[25] M. Nakano, H Kumagai, K. Miyakawa, T. Yamashina, H Inoue, M. Ishida, S. Aoi, N. Morikawa, dan P Harjadi, “Source Estimates of The May 2006 Java Earthquake,” Eos, Transactions American Geophysical Union, vol. 87, no. 45, pp. 493–494, Nov. 2006, doi: 10.1029/2006EO45 0002.
[26] T. Tsuji, K. Yamamoto, T. Matsuoka, Y. Yamada, K. Onishi, A. Bahar, I. Meilano, dan H. Z. Abidin , “Earthquake Fault of the 26 May 2006 Yogyakarta Earthquake Observed by SAR Interferometry,” Earth, Planets and Space, vol. 61, no. 7, p. e29, Aug. 2009, doi: 10.1186/BF033 53189.
[27] H. R. Smyth, R. Hall, dan G. J. Nichols, “Cenozoic Volcanic Arc History of East Java, Indonesia: The stratigraphic Record of Eruptions on an Active Continental Margin,” in Special Paper 436: Formation and Applications of the Sedimentary Record in Arc Collision Zones, vol. 436, Geological Society of America, 2008, pp. 199–222.
[28] I. Wölbern dan G. Rümpker, “Crustal Thickness Beneath Central and East Java (Indonesia) Inferred from P Receiver Functions,” Journal of Asian Earth Sciences, vol. 115, pp. 69–79, Jan. 2016, doi: 10.1016/j.jseaes.2015.09.001.
[29] J. D. Pesicek, C. H. Thurber, S. Widiyantoro, E. R. Engdahl, dan H. R. DeShon, “Complex Slab Subduction Beneath Northern Sumatra,” Geophys. Res. Lett., vol. 35, no. 20, p. L20303, Oct. 2008, doi: 10.1029/2008GL035262.
[30] S. Xu, E. Fukuyama, Y. Ben-Zion, dan J.-P. Ampuero, “Dynamic Rupture Activation of Backthrust Fault Branching,” Tectonophysics, vol. 644–645, pp. 161–183, Mar. 2015, doi: 10.1016/j.tecto.2015.01.011.
[31] S. Lallemand, A. Heuret, dan D. Boutelier, “On the Relationships Between Slab Dip, Back-arc Stress, Upper Plate Absolute Motion, and Crustal Nature in Subduction Zones,” Geochemistry, Geophysics, Geosystems, vol. 6, no. 9, 2005, doi: 10.1029/2005GC000917.
[32] P. Wessel dan W. H. Smith, “New, Improved Version of Generic Mapping Tools Released,” Eos, Transactions American Geophysical Union, vol. 79, no. 47, pp. 579, 1998.