Peralihan Rezim Tektonik: Implikasinya pada Konsentrasi Torium di Mamasa dan Tana Toraja, Sulawesi-Indonesia
Main Article Content
Abstract
Mamasa and Tana Toraja geographically are part of the western arm of Sulawesi Island. The mafic rocks in these areas and their surroundings have high radiation dose rate and thorium (Th) anomaly content. This research aim is to determine tectonic setting mechanism which play the important role on the increasing of Th concentration. Six rock samples were analysed using petrography and geochemical analyses (AAS, ICP-MS, NA, and XRF) completed with the 40K-40Ar dating on selected rock samples. Petrography observations show plagioclase, olivine, pyroxene, hornblende, nepheline, and allanite minerals presence in the rocks which identified as nepheline-basanite, basalt, trachybasalt, and gabbro. Numbers of texture appearances in the rocks indicate contamination and changes on tectonic setting. Geochemistry analysis shows that nepheline-basanite, basalt, trachybasalt, and gabbro (absarokite) were formed at the active continental margin (ACM), which is undergoing active subduction (westward subduction) to post-subduction transition. The changing of tectonic setting made magma solidify in extreme conditions. The magma solidify process is interpreted to occur at the age of 13.10-11.02 Ma. These mechanisms play an important role for the increase of thorium concentration in Mamasa and Tana Toraja.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. Introduction
By using or sharing content from EKSPLORIUM - Buletin Pusat Pengembangan Bahan Galian Nuklir ("the Journal"), you agree to follow these Terms and Conditions. The Journal's content is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) license. If you do not agree to these terms, please do not use the content.
2. How You Can Use the Content
-
Share: You can copy, share, and distribute the work, but only for non-commercial purposes.
-
Adapt: You can change, remix, or build on the work, as long as it is for non-commercial purposes and you share it under the same license (CC BY-NC-SA).
3. Attribution (Giving Credit)
When you use or share the content, you must:
-
Give proper credit to the author(s).
-
Mention the title of the work and the journal name.
-
Provide a link to the license (https://creativecommons.org/licenses/by-nc-sa/4.0/).
-
Indicate if you made any changes to the work.
4. Non-Commercial Use
You cannot use the work to make money or for any commercial activities. For example, you cannot sell or use the content in advertisements.
If you want to use the content for commercial purposes, you need to get permission from the author(s) or the publisher.
5. ShareAlike
If you make changes to the content (like creating a new version or remixing it), you must share your new version under the same CC BY-NC-SA license.
6. Exclusions
Some materials in the Journal may have different licenses or restrictions, such as third-party content (like images or datasets). You must respect the rules for those materials.
7. No Warranty
The content is provided "as is." The authors and publisher do not guarantee that the content is error-free or suitable for any specific purpose. Use the content at your own risk.
8. Modifications and Withdrawal of Content
The publisher and authors can update or remove content at any time. If content is removed, the previous versions will still follow these terms.
9. Ethical Use
You must use the content ethically and follow all relevant laws. This includes properly citing the original authors and not misusing the content.
10. Legal Compliance
You are responsible for making sure your use of the content follows the laws of your country. If you believe content violates your rights, please contact us.
11. Changes to Terms
These Terms and Conditions may be updated from time to time. Any changes will be posted on the Journal's website.
12. Contact Information
For questions about these Terms or for permission to use content commercially, please contact us at:
-
Email: eksplorium@brin.go.id
-
Website: https://ejournal.brin.go.id/eksplorium
Conclusion
By using the content from EKSPLORIUM - Buletin Pusat Pengembangan Bahan Galian Nuklir, you agree to follow these Terms and Conditions and the CC BY-NC-SA 4.0 International License.
References
[1] P. Faure, M. A. Bouhifd, M. Boyet, G. Manthilake, V. Clesi, dan J.-L. Devidal, “Uranium and thorium partitioning in the bulk silicate earth and the oxygen content of earth’s core,” Geochim. Cosmochim. Acta, vol. 275, pp. 83–98, Apr. 2020, doi: 10.1016/j.gca.2020.02.010.
[2] M. Khairani, Sutrisno, dan F. D. Indrastomo, “Identifikasi uranium dan thorium di Desa Takandeang, Mamuju, Sulawesi Barat, dengan menginterpretasikan data radiometri tanah atau batuan,” Al-Fiziya J. Mater. Sci. Geophys. Instrum. Theor. Phys., vol. 1, no. 1, Apr. 2018, doi: 10.15408/fiziya.v1i1.8993.
[3] F. R. Mu’awanah, B. Priadi, W. Widodo, I. G. Sukadana, dan R. Andriansyah, “Uranium mobilty on active stream sediment in Mamuju Area, West Sulawesi,” Eksplorium, vol. 39, no. 2, pp. 95–104, Nov. 2018, doi: 10.17146/eksplorium.2018.39.2.4953.
[4] S. P. Saputro, Magmatism of High Potassium in Tana Toraja, Bandung: Bandung Institute of Technology (ITB), 2017.
[5] R. Hall dan M. E. J. Wilson, “Neogene sutures in eastern Indonesia,” J. Asian Earth Sci., vol. 18, no. 6, pp. 781–808, Dec. 2000, doi: 10.1016/S1367-9120(00)00040-7.
[6] A. Kadarusman, S. Miyashita, S. Maruyama, C. D. Parkinson, dan A. Ishikawa, “Petrology, geochemistry, and paleogeographic reconstruction of the East Sulawesi Ophiolite, Indonesia,” Tectonophysics, vol. 392, no. 1–4, pp. 55–83, Nov. 2004, doi: 10.1016/j.tecto.2004.04.008.
[7] A. Maulana, K. Watanabe, A. Imai, dan K. Yonezu, “Origin of magnetite- and ilmenite-series granitic rocks in Sulawesi, Indonesia: Magma genesis and regional metallogenic constraint,” Procedia Earth Planet. Sci., vol. 6, pp. 50–57, 2013, doi: 10.1016/j.proeps.2013.01.007.
[8] M. J. Hibbard, Petrography to Petrogenesis, Englewood Cliffs, New Jersey: Prentice-Hall, 1995.
[9] N. Ratman dan S. Atmawinata, Geological Map of the Mamuju Quadrangle, Sulawesi, Scale 1:250000, Bandung: Geological Research and Development Centre, 1993.
[10] Djuri, Sudjatmiko, S. Bachri, dan Sukindo, Geological Map of the Majene and the Western Part of Palopo Sheets, Sulawesi, Scale 1:250000, Bandung: Geological Research and Development Centre, 1998.
[11] B. Priadi, Geochimie du Magmatisme de l'ouest et du Nord de Sulawesi, Indonesie. Traçage des Sources et Implications Géodynamiques, France: Univ. P. Sabatier, 1993.
[12] M. Elburg dan J. Foden, “Sources for magmatism in Central Sulawesi: Geochemical and Sr–Nd–Pb isotopic constraints,” Chem. Geol., vol. 156, no. 1–4, pp. 67–93, Apr. 1999, doi: 10.1016/S0009-2541(98)00175-2.
[13] J. D. Winter, Principles of Igneous and Metamorphic Petrology, 2nd ed., vol. 2. Edinburgh Gate, Harlow: Pearson Prentice Hall, 2014.
[14] S. P. Saputro dan B. Priadi, “Penyebab serta sumber high-K pada batuan volkanik dan plutonik di Tana Toraja, Sulawesi Selatan bagian utara: Terkait kerak, evolusi magma, dan rezim tektonik,” in Proceeding Seminar Nasional Kebumian ke-9, 2016, pp. 412–420.
[15] R. H. Vernon, A Practical Guide to Rock Microstructure, 2nd ed. Cambridge: Cambridge University Press, 2018.
[16] W. A. Deer, R. A. Howie, dan J. Zussman, Rock-Forming Minerals, Manchester: The Geological Society Publishing House, 1998.
[17] D. Shelley, Igneous and Metamorphic Rocks under the Microscope, London: Chapman & Hall, 1983.
[18] R. H. Vernon, A Practical Guide to Rock Microstructure, 1st ed. Cambridge: Cambridge University Press, 2004.
[19] E. W. M. Heinrich, Microscopic Petrography, New York: McGraw-Hill Company, 1956.
[20] K. G. Cox, J. D. Bell, dan R. J. Pankhurst, The Interpretation of Igneous Rocks. Dordrecht: Springer Netherlands, 1979.
[21] P. C. Rickwood, “The largest crystals,” Am. Mineral., vol. 66, no. 9–10, pp. 885–907, 1981.
[22] H. Fossen, Structural Geology, 2nd ed. Cambridge: Cambridge University Press, 2016.
[23] C. W. Passchier dan R. A. J. Trouw, Microtectonics, 2nd ed. Berlin, Heidelberg: Springer-Verlag, 2005.
[24] R. H. Vernon dan G. L. Clarke, Principles of Metamorphic Petrology. Cambridge: Cambridge University Press, 2008.
[25] R. C. Maury, “Les conséquences volcaniques de la subduction,” Bull. Soc. Geol. France XXIV, vol. 17, no.3, pp. 489–500, 1984, doi: 10.2113/gssgfbull.S7-XXVI.3.489.
[26] A. Peccerillo dan S. R. Taylor, “Geochemistry of Eocene Calc-Alkaline volcanic rocks from the Kastamonu Area, northern Turkey,” Contrib. to Mineral. Petrol., vol. 58, no. 1, pp. 63–81, 1976, doi: 10.1007/BF00384745.
[27] A. Maulana, K. Watanabe, A. Imai, dan K. Yonezu, “Petrology and geochemistry of granitic rocks in South Sulawesi, Indonesia: Implication for origin of magma and geodynamic setting,” World Acad. Sci. Eng. Technol., vol. 61, no. 1, pp. 8–13, 2012, doi: 10.5281/zenodo.1328100.
[28] R. Hébert et al., “Miocene post-collisional shoshonites dan their crustal xenoliths, Yarlung Zangbo Suture Zone southern Tibet: Geodynamic implications,” Gondwana Res., vol. 25, no. 3, pp. 1263–1271, Apr. 2014, doi: 10.1016/j.gr.2013.05.013.
[29] M. Wilson, Igneous Petrogenesis A Global Tectonic Approach, 1st ed. Dordrecht: Springer Netherlands, 2007.
[30] J. Dostal, “Rare earth element deposits of alkaline igneous rocks,” resources, vol. 6, no. 34, pp. 1–12, 2017, doi: 10.3390/resources6030034.
[31] V. Balaram, “Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact,” Geosci. Front., vol. 10, no. 4, pp. 1285–1303, Jul. 2019, doi: 10.1016/j.gsf.2018.12.005.
[32] N. M. Batapola et al., “A comparison of global rare earth element (REE) resources and their mineralogy with REE prospects in Sri Lanka,” J. Asian Earth Sci., p. 104475, Jul. 2020, doi: 10.1016/j.jseaes.2020.104475.
[33] I. G. Sukadana, A. Harijoko, dan L. D. Setijadji, “Tectonic setting of Adang Volcanic Complex in Mamuju Region, West Sulawesi Province,” Eksplorium, vol. 36, no. 1, pp. 31–44, May 2015, doi: 10.17146/eksplorium.2015.36.1.2769.
[34] A. G. Muhammad, F. D. Indrastomo, dan I. G. Sukadana, “Resistivity and conductivity pattern of rock containing radioactive minerals in Botteng and Takandeang, Mamuju, West Sulawesi,” Eksplorium, vol. 38, no. 1, pp. 49–62, 2017.
[35] D. Guo dan Y. Liu, “Occurrence and geochemistry of bastnäsite in carbonatite-related REE deposits, Mianning–Dechang REE belt, Sichuan Province, SW China,” Ore Geol. Rev., vol. 107, no. April 2018, pp. 266–282, Apr. 2019, doi: 10.1016/j.oregeorev.2019.02.028.
[36] R. Prassanti et al., “Uranium precipitation in Bangka Monazite as ammonium diuranate (ADU) using NH3 gas,” Eksplorium, vol. 41, no. 1, pp. 45–52, May 2020, doi: 10.17146/eksplorium.2020.41.1.5879.
[37] A. S. L. Sjöqvist, T. Zack, D. K. Honn, dan E. F. Baxter, “Modification of a rare-earth element deposit by low-temperature partial melting during metamorphic overprinting: Norra Kärr alkaline complex, southern Sweden,” Chem. Geol., vol. 545, no. April, p. 119640, Jul. 2020, doi: 10.1016/j.chemgeo.2020.119640.
[38] G. Estrade, E. Marquis, M. Smith, K. Goodenough, dan P. Nason, “REE concentration processes in ion adsorption deposits: Evidence from the Ambohimirahavavy alkaline complex in Madagascar,” Ore Geol. Rev., vol. 112, no. March, p. 103027, Sep. 2019, doi: 10.1016/j.oregeorev.2019.103027.
[39] S. Imashuku dan K. Wagatsuma, “Rapid identification of rare earth element bearing minerals in ores by cathodoluminescence method,” Miner. Eng., vol. 151, no. December 2019, p. 106317, Jun. 2020, doi: 10.1016/j.mineng.2020.106317.
[40] R. L. Rudnick dan S. Gao, “Composition of the continental crust,” Treatise on Geochemistry, vol. 3, no. 1, pp. 1–64, 2003, doi: 10.1016/B0-08-043751-6/03016-4.
[41] I. W. Hadlich, A. C. B. Neto, N. F. Botelho, dan V. P. Pereira, “The thorite mineralization in the Madeira Sn-Nb-Ta world-class deposit (Pitinga, Brazil),” Ore Geol. Rev., vol. 105, no. November 2018, pp. 445–466, Feb. 2019, doi: 10.1016/j.oregeorev.2019.01.004.
[42] S. P. Jr. Clark, Z. E. Peterman, dan K. S. Heier, “Abundances of uranium, thorium, and potassium.” In: S. P. Jr. Clark (ed.), Handbook of Physical Constants, Geological Society of America, vol. 97, pp. 521–541, 1966.
[43] M. Cuney dan K. Kyser, Recent and not-so-recent developments in uranium deposits and implications for exploration, Québec: Mineralogical Association of Canada, 2008.
[44] W. T. Chen dan M. F. Zhou, “Paragenesis, stable isotopes, and molybdenite Re-Os isotope age of the Lala iron-copper deposit, Southwest China,” Economic Geology, vol. 107, no. 3, pp. 459–480, 2012, doi: 10.2113/econgeo.107.3.459.
[45] H. Song et al., “Uranium enrichment in the Lala Cu-Fe deposit, Kangdian Region, China: A new case of uranium mineralization associated with an IOCG system,” Ore Geol. Rev., vol. 121, no. March 2019, p. 103463, Jun. 2020, doi: 10.1016/j.oregeorev.2020.103463.
[46] M. Cuney, “Evolution of uranium fractionation processes through time: Driving the secular variation of uranium deposit types,” Economic Geology, vol. 105, no. 3, pp. 553–569, 2010, doi: 10.2113/gsecongeo.105.3.553.