Identifikasi Deformasi Tektonik Aktif Berdasarkan Ekstraksi Kelurusan Morfologi dan Seismisitas di Sukabumi, Jawa Barat
Main Article Content
Abstract
The epicenter of the earthquake in Sukabumi has formed subsurface deformation which is now also recorded on the surface area. This is manifested through the geomorphology of the scarp and river lineaments. Extraction of lineaments produced by geological deformation can be used to identify its active tectonic deformation. The research objective is to determine the relationship between the active fault structure and the dominant direction of lineaments in the study area. The Edge Enhancing Filtering method is used to interpret lineaments manually and semi-automatically. The lineament geospatial data was extracted using the Sastratenaya formula to determine the chronology of the lineaments formed. The Sastratenaya formula results showed the lineaments recorded by DEM images data processing, the first segment direction is N315°E and the second is N10°E, both are interpreted as the result of fault reactivation. It can be interpreted that the Cimandiri Fault, which is an active fault that has an N88°E/85° rake 33° sinistral oblique-slip fault movement, affects the lineaments direction of two segments in the research area of Sukabumi, West Java.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. Introduction
By using or sharing content from EKSPLORIUM - Buletin Pusat Pengembangan Bahan Galian Nuklir ("the Journal"), you agree to follow these Terms and Conditions. The Journal's content is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) license. If you do not agree to these terms, please do not use the content.
2. How You Can Use the Content
-
Share: You can copy, share, and distribute the work, but only for non-commercial purposes.
-
Adapt: You can change, remix, or build on the work, as long as it is for non-commercial purposes and you share it under the same license (CC BY-NC-SA).
3. Attribution (Giving Credit)
When you use or share the content, you must:
-
Give proper credit to the author(s).
-
Mention the title of the work and the journal name.
-
Provide a link to the license (https://creativecommons.org/licenses/by-nc-sa/4.0/).
-
Indicate if you made any changes to the work.
4. Non-Commercial Use
You cannot use the work to make money or for any commercial activities. For example, you cannot sell or use the content in advertisements.
If you want to use the content for commercial purposes, you need to get permission from the author(s) or the publisher.
5. ShareAlike
If you make changes to the content (like creating a new version or remixing it), you must share your new version under the same CC BY-NC-SA license.
6. Exclusions
Some materials in the Journal may have different licenses or restrictions, such as third-party content (like images or datasets). You must respect the rules for those materials.
7. No Warranty
The content is provided "as is." The authors and publisher do not guarantee that the content is error-free or suitable for any specific purpose. Use the content at your own risk.
8. Modifications and Withdrawal of Content
The publisher and authors can update or remove content at any time. If content is removed, the previous versions will still follow these terms.
9. Ethical Use
You must use the content ethically and follow all relevant laws. This includes properly citing the original authors and not misusing the content.
10. Legal Compliance
You are responsible for making sure your use of the content follows the laws of your country. If you believe content violates your rights, please contact us.
11. Changes to Terms
These Terms and Conditions may be updated from time to time. Any changes will be posted on the Journal's website.
12. Contact Information
For questions about these Terms or for permission to use content commercially, please contact us at:
-
Email: eksplorium@brin.go.id
-
Website: https://ejournal.brin.go.id/eksplorium
Conclusion
By using the content from EKSPLORIUM - Buletin Pusat Pengembangan Bahan Galian Nuklir, you agree to follow these Terms and Conditions and the CC BY-NC-SA 4.0 International License.
References
[1] G. I. Marliyani, J. R. Arrowsmith, dan K. X. Whipple, “Characterization of Slow Slip Rate Faults in Humid Areas: Cimandiri Fault Zone, Indonesia,” J. Geophys. Res. Earth Surf., vol. 121, no. 12, hal. 2287–2308, 2016, doi: 10.1002/2016JF003846.
[2] E. Gunawan dan S. Widiyantoro, “Active Tectonic Deformation in Java, Indonesia Inferred from a GPS-derived Strain Rate,” J. Geodyn., vol. 123, hal. 49–54, 2019, doi: 10.1016/j.jog.2019. 01.004.
[3] F. Febriani, “Seismicity around the Cimandiri fault zone, West Java, Indonesia,” AIP Conf. Proc., vol. 1711, no. February 2016, 2016, doi: 10.1063/1.4941644.
[4] P. Supendi, A. D. Nugraha, N. T. Puspito, S. Widiyantoro, dan D. Daryono, “Identification of Active Faults in West Java, Indonesia, Based on Earthquake Hypocenter Determination, Relocation, and Focal Mechanism Analysis,” Geosci. Lett., vol. 5, no. 1, 2018, doi: 10.1186/s40562-018-0130-y.
[5] O. M. A. Radaideh, B. Grasemann, R. Melichar, dan J. Mosar, “Detection and Analysis of Morphotectonic Features Utilizing Satellite Remote Sensing and GIS: An Example in SW Jordan,” Geomorphology, vol. 275, hal. 58–79, 2016, doi: 10.1016/j.geomorph.2016.09.033.
[6] L. Han, Z. Liu, Y. Ning, dan Z. Zhao, “Extraction and Analysis of Geological Lineaments Combining a DEM and Remote Sensing Images from the Northern Baoji Loess Area,” Adv. Sp. Res., vol. 62, no. 9, hal. 2480–2493, 2018, doi: 10.1016/j.asr.2018.07.030.
[7] F. D. Indrastomo, I. G. Sukadana, dan Suharji, “Identifikasi Pola Struktur Geologi Sebagai Pengontrol Sebaran Mineral Radioaktif Berdasarkan Kelurusan pada Citra Landsat-8 di Mamuju, Sulawesi Barat,” vol. 38, no. 2, hal. 71–80, 2017, doi: 10.17146/eksplorium.2017.38.2. 3874.
[8] M. Nanda, S. Rizal, F. Abdullah, R. Idroes, dan N. Ismail, “Mapping Faults Distribution Based on DEM Data for Regional Spatial Plan Assessment of Sabang Municipality , Indonesia,” Int. J. Geomate, vol. 19, no. 76, hal. 197–204, 2020.
[9] J. C. Escamilla-Casas dan J. E. Schulz, “Tectonic Interpretation of Topographic Lineaments in the Seacoast Region of New Hampshire, U. S. A.,” Geofis. Int., vol. 55, no. 1, hal. 17–37, 2016, doi: 10.22201/igeof.00167169p.2016.55.1.1709.
[10] S. Pribadi, Afnimar, N. T. Puspito, dan G. Ibrahim, “Characteristics of Earthquake-Generated Tsunamis in Indonesia Based on Source Parameter Analysis,” J. Math. Fundam. Sci., vol. 45, no. 2, hal. 189–207, 2013, doi: 10.5614/j.math.fund.sci.2013.45.2.8.
[11] G. Sarp, “Lineament Analysis from Satellite Images, North-West of Ankara,” 2005.
[12] Yuliastuti, H. Susiati, Y. Daud, dan A. S. Sastratenaya, “Identifikasi Sistem Kelurusan Di Tapak Banten Menggunakan Data Citra Satelit SPOT-5,” JPEN, vol. 15, no. 1, hal. 9–16, 2013, doi: 10.17146/jpen.2013.15.1.1613.
[13] R. M. Mahbub dan H. G. Hartono, “Korelasi Sebaran Gempabumi dan Densitas Kelurusan pada Keamanan Calon Tapak PLTN Bojonegara, Banten,” Kurvatek, vol. 4, no. 2, hal. 93–102, 2019, doi: 10.33579/krvtk.v4i2.1583.
[14] R. G. Thannoun, “Automatic Extraction and Geospatial Analysis of Lineaments and their Tectonic Significance in some areas of Northern Iraq using Remote Sensing Techniques and GIS,” Int. J. Enhanc. Res. Sci. Technol. Eng., vol. 2, no. 2, hal. 1–11, 2013, doi: 10.13140/RG.2.2.20851. 99363.
[15] T. G. Sitharam, P. Anbazhagan, dan K. Ganesha Raj, “Use of Remote Sensing and Seismotectonic Parameters for Seismic Hazard Analysis of Bangalore,” Nat. Hazards Earth Syst. Sci., vol. 6, hal. 927–939, 2006, doi: 10.5194/nhess-6-927-2006.
[16] I. Haryanto, J. Hutabarat, A. Sudradjat, N. N. Ilmi, dan E. Sunardi, “Tektonik Sesar Cimandiri, Provinsi Jawa Barat,” Bull. Sci. Contrib., vol. 15, no. 3, hal. 255–274, 2017.