Indikasi Sesar Naik di Plampang, Pulau Sumbawa Berdasarkan Analisis Gempa Bumi 13 Juni 2020

Main Article Content

Priyobudi Priyobudi
Mohamad Ramdhan

Abstract

The existence of an active fault with a reverse fault mechanism in the Plampang area is successfully delineated from the distribution of the relocated hypocenter, the moment tensor inversion, and the Coulomb stress changes. This study also reveals the source of the earthquake in the active fault with a relatively shallow depth which can be a threat on Sumbawa Island if the maximum magnitude is released in the future. Seismicity from hypocenter relocation shows the distribution of the epicenter with a southwest–northeast direction. It is also supported by the moment tensor inversion result which shows the fault plane trending southwest–northeast (N2240E) with a steep dip (490). The vertical section of seismicity in the dip direction shows that the slope of the plane has a lower angle with increasing depth. The lower angle of a fault plane shows a decollement structure at a depth of 10–15 km and gradually becomes steep as a splay fault structure at a depth of 0–10 km. It is consistent with the result of moment tensor inversion which shows the mechanism of a reverse fault that occurred at a depth of 7 km. The Coulomb stress changes show the stress increasing outside the fault plane area, which triggers aftershocks. The distribution of aftershocks shows a hypothetical fault plane of 19 km long and 12 km wide. A fault of this size has the potential to generate an earthquake with a magnitude maximum of Mw 6.4. The Sumbawa earthquake on June 13, 2020, having M 5.3 was caused by a small part of the activity from the fault.


 


 


 

Article Details

How to Cite
Priyobudi, & Ramdhan, M. (2021). Indikasi Sesar Naik di Plampang, Pulau Sumbawa Berdasarkan Analisis Gempa Bumi 13 Juni 2020. EKSPLORIUM, 42(2), 111–118. https://doi.org/10.17146/eksplorium.2021.42.2.6273
Section
##section.default.title##

References

[1] R. McCaffrey, “Active Tectonics of the Eastern Sunda and Banda Arcs,” Journal of Geophysical Research Atmospheres, vol. 931, no. B12, pp. 15163–15182, 1988, doi: 10.1029/JB093iB12p15163.

[2] BMKG, “Pulau Lombok Kembali Diguncang Gempabumi M=7.0, Tidak Berpotensi Tsunami”, bmkg, 20 Agustus 2018, [Online]. Tersedia: https://www.bmkg.go.id/press-release/?p=pulau-lombok-kembali-diguncang-gempabumi-m7-0-tidak-berpotensi-tsunami&tag=press-release&lang=ID [Diakses: 24 Februari 2021].

[3] Pusat Studi Gempa Nasional (PuSGeN), “Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017”, Puslitbang Perumahan dan Permukiman, Balitbang Kementerian PUPR, 2017.

[4] S. Supartoyo, “Analisis Morfotektonik dan Pemetaan Geologi pada Identifikasi Sesar Permukaan di daerah Plampang, Pulau Ngali dan Pulau Rakit, Provinsi Nusa Tenggara Barat,” Jurnal Pengembangan Energi Nuklir, vol. 21, no. 1, pp. 45–52, 2019, doi: 10.17146/jpen.2019.21.1.5461.

[5] M. Ramdhan, Priyobudi, A. Mursityanto, K. H. Palgunadi, dan Daryono, “Analysis of M 5.3 Sumbawa, Indonesia Earthquake 2020 and Its Aftershocks Based on Hypocenter Relocation from BMKG Seismic Stations,” IOP Conf. Ser.: Earth Environ. Sci., vol. 873, no. 1, p. 012070, 2021, doi: 10.1088/1755-1315/873/1/012070.

[6] J. Pesicek, C. Thurber, H. Zhang, H. DeShon, E. Engdahl, dan S. Widiyantoro, “Teleseismic Double-Difference Relocation of Earthquakes Along the Sumatra-Andaman Subduction Zone Using a 3-D Model,” Journal of Geophysical Research: Solid Earth, vol. 115, no. B10, 2010, doi: 10.1029/2010JB007443.

[7] S. Widiyantoro dan R. van der Hilst, “Mantle Structure Beneath Indonesia Inferred from High-Resolution Tomographic Imaging,” Geophysical Journal International, vol. 130, no. 1, pp. 167–182, 1997, doi: 10.1111/j.1365-246X.1997.tb00996.x.

[8] S. Widiyantoro dan R. van der Hilst, “Structure and Evolution of Lithospheric Slab Beneath the Sunda Arc, Indonesia,” Science, vol. 271, no. 5255, pp. 1566–1570, 1996, doi: 10.1126/science.271.5255.1566.

[9] Priyobudi dan M. Ramdhan, “Rekonstruksi Model Bawah Permukaan Sesar Palu Berdasarkan Hasil Relokasi Hiposenter,” Jurnal Lingkungan dan Bencana Geologi, vol. 11, no. 1, pp. 1–9, 2020, doi: 10.34126/jlbg.v11i1.293.

[10] S. E. Minson dan D. S. Dreger, “Stable Inversions for Complete Moment Tensors,” Geophys J Int, vol. 174, no. 2, pp. 585–592,. 2008, doi: 10.1111/j.1365-246X.2008.03797.x.

[11] G. C. P. King, R. S. Stein, dan J. Lin, “Static Stress Changes and the Triggering of Earthquakes,” Bulletin of the Seismological Society of America, vol. 84, no. 3, pp. 935–953, 1994, doi: 10.1785/BSSA0840030935.

[12] A. Sudradjat dan B. Hermanto, “Peta Geologi Tinjau Sumbawa, Nusa Tenggara Barat, Puslitbang Geologi, Bandung, 1975.

[13] P. Weatherall, K. M. Marks, M. Jakobsson, T. Schmitt, S. Tani, J. E. Arndt, M. Rovere, D. Chayes, V. Ferrini, dan R. Wigley, “A New Digital Bathymetric Model of the World’s Oceans,” Earth and Space Science, vol. 2, no. 8, pp. 331–345, 2015, doi: https://doi.org/10.1002/2015EA000107.

[14] D. L. Wells dan K. J. Coppersmith, “New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement,” Bulletin of the Seismological Society of America, vol. 84, no. 4, pp. 974–1002, 1994, doi: 10.1785/BSSA0840040974.

[15] Pusat Survei Geologi, “Geodinamika dan Mekanisme Gempabumi Lombok”, Prosiding Seminar Gempabumi Lombok di KESDM, 2018.