Interpretasi Lingkungan Pengendapan Formasi Batuan Menggunakan Analisis Elektrofasies di Lokasi Tapak Puspiptek Serpong

Main Article Content

Heri Syaeful
Adi Gunawan Muhammad

Abstract

The activity of subsurface material composing site foundation characterization is part of nuclear installation siting study. Characterization conducted by several methods, such as understanding the depositional environment of rock formations. As a segment of depositional environment interpretation method, facies model analysis based on electrofacies provides quicker information on depositional system of rock formation. Methodology applied is gamma ray log (log GR) interpretation using relative correlation between log shape variation and sedimentation facies. Based on the analysis, Bojongmanik Formation was deposited on marine-lagoonal environment with very low wave influence. Log GR that shows shape of funnel, serrated, and symmetry, indicate shoreface, lagoon, and tidal point bar facies. The direction of sedimentation, basin, and supply of Bojongmanik Formation interpreted relatively to the north. Serpong Formation deposited on meandering river system, and composed of point bar deposit, crevasse splay, and floodplain deposit. The result of analysis is expected to be guidance in further analysis related to the characterization of foundation materials.

Article Details

How to Cite
Syaeful, H., & Muhammad, A. G. (2017). Interpretasi Lingkungan Pengendapan Formasi Batuan Menggunakan Analisis Elektrofasies di Lokasi Tapak Puspiptek Serpong. EKSPLORIUM, 38(1), 29–42. https://doi.org/10.17146/eksplorium.2017.38.1.3538
Section
##section.default.title##

References

Y. Cui, G. Wang, S. J. Jones, Z. Zhou, Y. Ran, and J. Lai, “Prediction of diagenetic facies using well logs e A case study from the upper Triassic Yanchang Formation, Ordos Basin, China,” Mar. Pet. Geol., vol. 81, pp. 50–65, 2017.

A. Nazeer, S. Ahmed, and S. Hussain, “Sedimentary facies interpretation of Gamma Ray (GR) log as basic well logs in Central and Lower Indus Basin of Pakistan,” Geod. Geodyn., vol. 7, no. 6, pp. 432–443, 2016.

L. Rolon, S. D. Mohaghegh, S. Ameri, R. Gaskari, and B. Mcdaniel, “Using artificial neural networks to generate synthetic well logs,” J. Nat. Gas Sci. Eng., vol. 1, pp. 118–133, 2009.

C. Betzler, T. Pawellek, M. Abdullah, and A. Kossler, “Facies and stratigraphic architecture of the Korallenoolith Formation in North Germany (Lauensteiner Pass, Ith Mountains),” Sediment. Geol., vol. 194, pp. 61–75, 2007.

International Atomic Energy Agency (IAEA), Geotechnical Aspects of Site Evaluation and Foundations for Nuclear Power Plants. Vienna, Austria, 2004.

J. He, W. Ding, J. Zhang, A. Li, and W. Zhao, “Logging identification and characteristic analysis of marine-continental transitional organic-rich shale in the Carboniferous-Permian strata, Bohai Bay Basin,” Mar. Pet. Geol., vol. 70, pp. 273–293, 2016.

M. Benvenuti and S. Del Conte, “Facies and sequence stratigraphic modeling of a Upper Pliocene – Lower Pleistocene fluvial succession (Valdelsa Basin, central Italy),” Sediment. Geol., vol. 294, pp. 303–314, 2013.

A. Roslin and J. S. Esterle, “Electrofacies analysis for coal lithotype profiling based on high-resolution wireline log data,” Comput. Geosci., vol. 91, pp. 1–10, 2016.

Ikatan Ahli Geologi Indonesia (IAGI), Sandi Stratigrafi Indonesia Edisi 1996. 1996.

R. G. Walker and N. P. James, Facies model: response to sea level change. Geological Association of Canada, 1992.

P. S. Momta and M. I. Odigi, “Reconstruction of the Depositional Setting of Tortonian Sediments in the Yowi Field, Shallow Offshore Niger Delta, Using Wireline Logs,” Am. J. Geosci., vol. 6, no. 1, pp. 24–35, 2016.

Q. K. Jadoon, E. M. Roberts, B. Henderson, T. G. Blenkinsop, R. A. J. Wüst, and C. Mtelela, “Lithological and facies analysis of the Roseneath and Murteree shales, Cooper Basin, Australia,” J. Nat. Gas Sci. Eng., vol. 37, pp. 138–168, 2017.

Abdurrokhim and M. Ito, “The role of slump scars in slope channel initiation: A case study from the Miocene Jatiluhur Formation in the Bogor Trough , West Java,” J. Asian Earth Sci., vol. 73, pp. 68–86, 2013.

B. Clements and R. Hall, “Cretaceous To Late Miocene Stratigraphic and Tectonic Evolution of West Java,” in Proceedings of Indonesian Petroleum Association, 2007.

S. Martodjojo, Evolusi Cekungan Bogor, Jawa Barat. ITB Bandung, 2003.

T. Turkandi, Sidarto, D. Agustiyanto, and M. Hadiwidjojo, “Peta Geologi Lembar Jakarta dan Kepulauan Seribu, Jawa.” Pusat Penelitian dan Pengembangan Geologi, Bandung, 1992.

S. H. Vaziri, F. T. Fürsich, and N. Kohansal-ghadimvand, “Facies analysis and depositional environments of the Upper Cretaceous Sadr unit in the Nakhlak area , Central Iran,” Rev. Mex. Ciencias Geol., vol. 29, no. 2, pp. 384–397, 2012.

M. Fachri, Djuhaeni, L. M. Hutasoit, and A. M. Ramdhan, “Stratigrafi dan Hidrostratigrafi Cekungan Airtanah Jakarta,” Bul. Geol., vol. 34, no. 3, pp. 169–190, 2002.

R. M. Delinom, A. Assegaf, H. Z. Abidin, M. Taniguchi, D. Suherman, R. Fajar, and E. Yulianto, “The contribution of human activities to subsurface environment degradation in Greater Jakarta Area, Indonesia,” Sci. Total Environ., vol. 407, no. 9, pp. 3129–3141, 2008.

Marjiyono, H. Suntoko, A. Soehaimi, Yuliastuti, and H. Syaeful, “Kelas Soil Daerah Sekitar Rencana Tapak Reaktor Daya Eksperimental (RDE) Serpong Dari Data Mikrotremor,” J. Pengemb. Energi Nukl., vol. 17, no. 1, pp. 57–66, 2015.