SPATIAL MACHINE LEARNING FOR MONITORING TEA LEAVES AND CROP YIELD ESTIMATION USING SENTINEL-2 IMAGERY, (A Case of Gunung Mas Plantation, Bogor)
DOI:
https://doi.org/10.30536/j.ijreses.2022.v19.a3830Keywords:
GeoAI, Sentinel-2, machine learning, crop tea yield estimationAbstract
Indonesia's tea production and export volume have fluctuated with a downward trend in the last five years, partly due to the increasingly competitive world tea quality. Crop yield estimation is part of the management of tea plucking, affecting tea quality and quantity. The constraint in estimating crop yields requires technology that can make the process more effective and efficient. Remote sensing technology and machine learning have been widely used in precision agriculture. Recently, big data processing, especially remote sensing data, machine learning, and deep learning have been carried out using a cloud computing platform. Therefore, we propose using GeoAI, a combination of Sentinel-2A imagery, machine learning, and Google Collaboratory, to predict ready for plucking tea leaves at optimal plucking time at Gunung Mas Plantation Bogor. We used selected bands of Sentinel-2A and extracted more features (i.e., NDVI) as a training set. Then we utilized the tea blocks boundary and tea plucking data to generate labels using Random Forest (RF) and Support Vector Machine (SVM). The classification results were further used to estimate the production of crop tea yield. The RF classifier is able to achieve overall accuracy at 51% and SVM at 54%. Meanwhile, accuracy at optimally aged tea blocks is able to achieve at 75.62% for RF and 52.88% for SVM. Thus, the SVM classifier is better in terms of overall accuracy. Meanwhile, the RF classifier is superior in predicting ready for plucking tea at optimally aged tea blocks.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Author (s)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


