MAPPING THE AIR MOISTURE CHANGE IN UNDER CANOPY TREES USING A HEMISPHERICAL AND AERIAL PHOTOGRAPH BASED ON MACHINE LEARNING APPROACHES
DOI:
https://doi.org/10.30536/j.ijreses.2022.v19.a3816Keywords:
hemispherical photography, trees canopy, air humidity, spatial distribution, aerial photographAbstract
The essential roles of trees in controlling the local climatic variation, such as air moisture, are still interesting to observe. Therefore, this study must deliver knowledge of the benefits of growing trees and enhance people's awareness of climate change adaptation. Here, the analysis requires several data fields such as hemispherical photography, an aerial photograph of a UAV, and air temperature collected using a wet and dry bulb thermometer, which has converted to air moisture. All these are considered to understand the air moisture change under the trees' canopy during a day observation. The hemispherical photography and aerial photograph of a UAV are processed to measure the tree's canopy size and then used together with interpolated air moisture to map the variation in air moisture distribution in under-canopy trees using random forest (RF) and Artificial Neural Network (ANN). The result shows that hemispherical photography describes the ability to control the air moisture change. As its size increases, the air moisture level tends to be higher. It was maintained at more than 70% compared to the area with lower canopy cover. This characteristic is similar to the pattern shown by the RF and ANN. However, the SVM has better results as it can separate air humidity in vegetated and non-vegetated areas.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Author (s)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


