MACHINE LEARNING APPLIED TO SENTINEL-2 AND LANDSAT-8 MULTISPECTRAL AND MEDIUM-RESOLUTION SATELLITE IMAGERY FOR THE DETECTION OF RICE PRODUCTION AREAS IN NGANJUK, EAST JAVA, INDONESIA
DOI:
https://doi.org/10.30536/j.ijreses.2021.v18.a3538Keywords:
multispectral remote sensing, medium-resolution optic, machine learning, rice detectionAbstract
Statistics Indonesia (BPS) has been introducing the use of Area Sampling Frame (ASF) surveys from 2018 to estimate rice production areas, although the process continues to suffer from the high costs of human and other resources. To support this type of conventional field survey, a more scalable and inexpensive approach using publicly-available remote sensing data, for example from the Sentinel-2 and Landsat-8 satellites, has been explored. In this research, we compare the performance gain from Sentinel-2 and Landsat-8 images using a multiple composite-index enriched machine learning classifier to detect rice production areas located in Nganjuk, East Java, Indonesia as a case study area. We build a detection model from a set of machine learning classifiers, Decision Tree (CART), Support Vector Machine, Logistic Regression, Ensemble Bagging Methods (Random Forest and Extra Trees), and Ensemble Boosting Methods (AdaBoost and XGBoost). The composite indices consist of the NDVI and EVI for agricultural and forest areas, NDWI for water and cloud, and NDBI, NDTI, and BSI for built-up areas, fallows, and asphalt-based roads. Validated by k-fold cross-validation, Sentinel-2 and Landsat-8 achieved F1-scores of 0.930 and 0.919 respectively at the scale of 30 meters per pixel. Using a 10 meter resolution per pixel for the Sentinel-2 imagery showed an increased F1-score of up to 0.971. Our evaluation shows that the higher spatial resolution imagery of Sentinel-2 achieves a better prediction, not only performance-wise, but also as a better representation of actual conditions.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


