UTILIZING REMOTE SENSING AND MACHINE LEARNING FOR ECOSYSTEM SERVICES MAPPING AT GUNUNG MAS TEA PLANTATION
DOI:
https://doi.org/10.30536/j.ijreses.2023.v20.a3880Keywords:
AHP, Ecosystem Services, Land Use and Land Cover, Supervised classification, TeaAbstract
Land use and land cover changes are one of the main factors affecting ecosystems and the services they provide. Conversion from natural vegetation to agricultural and urban land can lead to the degradation of ecosystem services and loss of biodiversity. Puncak area, Bogor, which is a highland area, has become an area that is synonymous with tea plantations because it has an ecosystem that is suitable for being a tea plantation area. Gunung Mas tea plantation managed by PTPN VIII is one of the largest tea plantations and a contributor to foreign exchange in Indonesia. The tourism potential in the plantation and agricultural business sectors has a high selling value as a tourist object and attraction. The purpose of this study is to find out the distribution of ecosystem services for climate regulation, water flow and flood regulation, and ecotourism and cultural recreation services at Gunung Mas tea plantation which is displayed in the form of an Ecosystem Service Map. The land cover classification was extracted from the Sentinel 2A image, which was then scored based on expert judgment. The scoring results are then processed using the AHP Pairwise Comparison method. The results of the study show that the research area has very high climate regulation ecosystem services, very high water flow and flood regulation, and high cultural recreation and ecotourism ecosystem services.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


