EFFECT OF LOW PASS FILTER ON BATHYMETRIC DETECTION IN PULAU PUTRI SHALLOW SEA, KEPULAUAN SERIBU USING PLANETSCOPE SATELLITE IMAGERY
DOI:
https://doi.org/10.30536/j.ijreses.2023.v20.a3897Keywords:
bathymetry detection, stumpf algorithm, Putri Island, PlanetScopeAbstract
Sea depth measurements are usually only carried out at locations that can be passed by ships, so measurements in shallow waters are often not possible. Along with the development of remote sensing technology, shallow water bathymetry mapping can now be done using satellite imagery. The Stumpf method is a ratio model that compares two bands in order to reduce the effect of water albedo. The purpose of this research is to study the processing of satellite imagery data for the detection of bathymetry in shallow sea waters, to determine the effect of the low pass filter, and to find out the methods for obtaining detection results with high accuracy. In this study, the primary data used was PlanetScope imagery from the NICFI program. Bathymetry detection of shallow marine waters was carried out around the waters of Putri Island, Seribu Islands Regency. The results of the accuracy test for the detection of shallow sea bathymetry without the application of a low pass filter using the confusion matrix method and the RMSE calculation have higher accuracy with an overall accuracy value of 94.17% and an RMSE value of 1.61
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


