ESTIMATION OF ABOVEGROUND CARBON STOCK USING SAR SENTINEL-1 IMAGERY IN SAMARINDA CITY
DOI:
https://doi.org/10.30536/j.ijreses.2021.v18.a3609Keywords:
stands vegetation, carbon stock estimation, remote sensing, Sentinel-1 imagery, Samarinda CityAbstract
Estimation of aboveground carbon stock on stands vegetation, especially in green open space, has become an urgent issue in the effort to calculate, monitor, manage, and evaluate carbon stocks, especially in a massive urban area such as Samarinda City, Kalimantan Timur Province, Indonesia. The use of Sentinel-1 imagery was maximised to accommodate the weaknesses in its optical imagery, and combined with its ability to produce cloud-free imagery and minimal atmospheric influence. The study aims to test the accuracy of the estimated model of above-ground carbon stocks, to ascertain the total carbon stock, and to map the spatial distribution of carbon stocks on stands vegetation in Samarinda City. The methods used included empirical modelling of carbon stocks and statistical analysis comparing backscatter values and actual carbon stocks in the field using VV and VH polarisation. Model accuracy tests were performed using the standard error of estimate in independent accuracy test samples. The results show that Samarinda Utara subdistrict had the highest carbon stock of 3,765,255.9 tons in the VH exponential model. Total carbon stocks in the exponential VH models were 6,489,478.1 tons, with the highest maximum accuracy of 87.6 %, and an estimated error of 0.57 tons/pixel.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


