COMPARISON OF THE RADIOMETRIC CORRECTION LANDSAT-8 IMAGE BASED ON OBJECT SPECTRAL RESPONSE AND VEGETATION INDEX
DOI:
https://doi.org/10.30536/j.ijreses.2021.v18.a3632Keywords:
Landsat-8, atmospheric correction,, spectral response, NDVIAbstract
Landsat-8 standard level (level 1T) data received by users still in digital form can be used directly for land cover/land use mapping. These data have low radiometric accuracy when used to produce information such as vegetation indices, biomass, and land cover/land use classification. In this study, radiometric/atmospheric correction was conducted using FLAASH, 6S, DOS, TOA+BRDF and TOA method to eliminate atmospheric disturbances and compare the results with field measurements based on object spectral response and NDVI values. The results of the spectral measurements of objects in paddy fields at harvest time in the Cirebon Regency, West Java, Indonesia show that the FLAASH and 6S method have spectral responses that are close to those of objects in the field compared to the DOS, TOA and TOA+BRDF methods. For the NDVI value, the 6S method has the same tendency as the object's NDVI value in the field.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Author (s)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


