ASSESSMENT OF THE ACCURACY OF DEM FROM PANCHROMATIC PLEIADES IMAGERY (CASE STUDY: BANDUNG CITY. WEST JAVA)
DOI:
https://doi.org/10.30536/j.ijreses.2020.v17.a3329Keywords:
Pleiades, Digital Elevation Model, Stereo, AccuracyAbstract
Pleiades satellite imagery is very high resolution. with 0.5 m spatial resolution in the panchromatic band and 2.5 m in the multispectral band. Digital elevation models (DEM) are digital models that represent the shape of the Earth's surface in three-dimensional (3D) form. The purpose of this study was to assess DEM accuracy from panchromatic Pleaides imagery. The process conducted was orthorectification using ground control points (GCPs) and the rational function model with rational polynomial coefficient (RFC) parameters. The DEM extraction process employed photogrammetric methods with different parallax concepts. Accuracy assessment was made using 35 independent check points (ICPs) with an RMSE accuracy of ± 0.802 m. The results of the Pleaides DEM image extraction were more accurate than the National DEM (DEMNAS) and SRTM DEM. Accuracy testing of DEMNAS results showed an RMSE of ± 0.955 m. while SRTM DEM accuracy was ± 17.740 m. Such DEM extraction from stereo Pleiades panchromatic images can be used as an element on base maps with a scale of 1: 5.000.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


