DETECTION AND ANALYSIS OF SURFACE URBAN COOL ISLAND USING THERMAL INFRARED IMAGERY OF SALATIGA CITY, INDONESIA
DOI:
https://doi.org/10.30536/j.ijreses.2020.v17.a3387Keywords:
Thermal Remote Sensing,Land Surface Temperature, Urban Microclimate, Surface Urban Cool IslandAbstract
The detection and monitoring of the dynamics of urban micro-climatesneeds to be performedeffectively, efficiently, consistently and sustainably inan effort to improve urban resilience to suchphenomena. Thermal remote sensing posesses surface thermal energy detection capabilities which can be converted into surface temperatures and utilised to analyse the urban micro-climate phenomenon overlarge areas, short periods of time, and at low cost. This paper studies the surface urban cool island (SUCI) effect, the reverse phenomenon of the surface urban heat island (SUHI) effect, in an effort to provide cities with resistance to the urban microclimate phenomenon.The study also aims to detect urban micro-climate phenomena, and to calculate the intensity and spatial distribution of SUCI. The methods used include quantitative-descriptive analysis of remote sensing data, including LST extraction, spectral transformation, multispectral classification for land cover mapping, and statistical analysis. The results show that the urban micro-climate phenomenon in the form of SUHI in the middle of the city of Salatiga is due to the high level of building density in the area experiencing the effect, which mostly has a normal surface temperature based on the calculation of the threshold, while the relative SUCI occurs at the edge of the city. SUCI intensity in Salatiga ranges between -6.71°C and0°C and is associated with vegetation.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Author (s)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


