VERTICAL LAND MOTION AND INUNDATION PROCESSES BASED ON THE INTEGRATION OF REMOTELY SENSED DATA AND IPCC AR5 SCENARIOS IN COASTAL SEMARANG, INDONESIA
DOI:
https://doi.org/10.30536/j.ijreses.2019.v16.a3272Keywords:
relative sea-level rise, interferometry, remote sensing, InSARAbstract
Vertical land motion (VLM) is an important indicator in obtaining information about relative sea-level rise (SLR) in the coastal environment, but this remains an area of study poorly investigated in Indonesia. The purpose of this study is to investigate the significance of the influence of VLM and SLR on inundation. We address this issue for Semarang, Central Java, by estimating VLM using the small baseline subset time series interferometry SAR method for 24 Sentinel-1 satellite data for the period March 2017 to May 2019. The interferometric synthetic aperture radar (InSAR) method was used to reveal the phase difference between two SAR images with two repetitions of satellite track at different times. The results of this study indicate that the average land subsidence that occurred in Semarang between March 2017 and May 2019 was from (-121) mm/year to + 24 mm/year. Through a combination of VLM and SLR scenario data obtained from the Intergovernmental Panel on Climate Change (IPCC), it was found that the Semarang coastal zone will continue to shrink due to inundation (forecast at 7% in 2065 and 10% in 2100).
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


