OPTIMIZATION OF RICE FIELD CLASSIFICATION MODEL BASED ON THRESHOLD INDEX OF MULTITEMPORAL LANDSAT IMAGES
DOI:
https://doi.org/10.30536/j.ijreses.2020.v17.a3333Keywords:
multitemporal, EVI, threshold, optimizatonAbstract
The development of rice land classification models in 2018 has shown that the phenology-based threshold of rice crops from the multi-temporal Landsat image index can be used to classify rice fields relatively well. The weakness of the models was the limitations of the research area, which was confined to the Subang region, West Java, so it is was deemed necessary to conduct further research in other areas. The objective of this study is to obtain optimal parameters of classification model of rice and land based on multi-temporal Landsat image indexes. The study was conducted in several districts of rice production centers in South Sulawesi and West Java (besides Subang). The threshold method was employed for the Landsat Image Enhanced Vegetation Index (EVI). Classification accuracy was calculated in two stages, the first using detailed scale reference information on rice field base, and the second using field data (from a survey). Based on the results of the analysis conducted on several models, the highest accuracy is generated by the three index parameter models (EVI_min, EVI_max, and EVI_range) and adjustable threshold with 94.8% overall accuracy. Therefore this model was acceptable for used for nationally rice fields mapping.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


