CLOUD IDENTIFICATION FROM MULTITEMPORAL LANDSAT-8 USING K-MEANS CLUSTERING
DOI:
https://doi.org/10.30536/j.ijreses.2019.v16.a3285Keywords:
cloud identification, Landsat-8, K-means clusteringAbstract
In the processing and analysis of remote-sensing data, cloud that interferes with earth-surface data is still a challenge. Many methods have already been developed to identify cloud, and these can be classified into two categories: single-date and multi-date identification. Most of these methods also utilize the thresholding method which itself can be divided into two categories: local thresholding and global thresholding. Local thresholding works locally and is different for each pixel, while global thresholding works similarly for every pixel. To determine the global threshold, two approaches are commonly used: fixed value as threshold and adapted threshold. In this paper, we propose a cloud-identification method with an adapted threshold using K-means clustering. Each related multitemporal pixel is processed using K-means clustering to find the threshold. The threshold is then used to distinguish clouds from non-clouds. By using the L8 Biome cloud-cover assessment as a reference, the proposed method results in Kappa coefficient of above 0.9. Furthermore, the proposed method has lower levels of false negatives and omission errors than the FMask method.
Published
Issue
Section
License
Copyright (c) 2019 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


