SPECTRAL ANALYSIS OF THE HIMAWARI-8 DATA FOR HOTSPOT DETECTION FROM LAND/FOREST FIRES IN SUMATRA
DOI:
https://doi.org/10.30536/j.ijreses.2018.v15.a2836Keywords:
Himawari-8, hotspot, spectralAbstract
Himawari-8 is the last generation of the low spatial resolution satellite imagery that has capability to detect the thermal variation on the earth of every 10 minute. This must be very potential to be used for detecting land/forest fire. This paper has explored the spectral prospective of the Himawari-8 for detecting land/forest fire hotspot. The main objective for this study is to identify the potential use of Himawari-8 for detecting of land forest fire hotspot. The study area was performed in Ogan Komering Ilir, South of Sumatra, which on 2015 occur great forest/land fire event. The main process included in this study are image projection, training sample collection and spectral statistical analysis measured by calculate statistic, they are average values, standard deviation values from reflectance visible band value and brightness temperature value, beside that validation of data obtained from medium resolution data of Landsat 8 with the similar acquisition time. The study found that the Himawari-8 has good capacity to identify land/forest fire hotspot as expressed for high accuracy assessment using band 3 and band 7.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


