ACCURACY EVALUATION OF STRUCTURE FROM MOTION THERMAL MOSAICING IN THE CENTER OF TOKYO
DOI:
https://doi.org/10.30536/j.ijreses.2018.v15.a2856Keywords:
accuracy evaluation, the center of Tokyo, georeferencing, structure from motion, land surface temperature, orthogonalAbstract
In the airborne and high-resolution measurement of Land Surface Temperature (LST) over large area, capturing and synthesizing of many images are necessary. In the conventional method, the process of georeferencing a large number of LST images is necessary to make one large image. Structure from Motion (SfM) technique was applied to automized the georeferencing process. We called it “SfM Thermal Mosaicingâ€. The objective of this study is to evaluate the accuracy of SfM thermal mosaicing in making an orthogonal LST image. By using airborne thermal images in the center of Tokyo, the LST image with the 2m resolution was created by using SfM thermal mosaicing. Its accuracy was then analyzed. The result showed that in the whole examined area, the mean error distance was 4.22m and in the small parts of the examined area, the mean the error distance was about 2m. Considering the image resolution, the error was minimal indicating good performance of the SfM thermal mosaicing. Another advantage of SfM thermal mosaicing is that it can make precise orthogonal LST image. With the progress of UAV and thermal cameras, the proposed method will be a powerful tool for the environmental researches on the LST.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


