ANALYSIS OF ANTENNA SPECIFICATION FOR VERY HIGH RESOLUTION SATELLITE DATA ACQUISITION THROUGH DIRECT RECEIVING SYSTEM (DRS)
DOI:
https://doi.org/10.30536/j.ijreses.2018.v15.a2799Keywords:
VHRSI, Optic, SAR, Direct Receiving System (DRS), AntennaAbstract
Very High Resolution Satellite Image (VHRSI) data for Indonesian Government license is required by ministries/agencies, TNI, police, and local government to support national programs. But Indonesia did not have a VHRSI data recipient facility to directly acquire this data. In accordance with Law 21/2013 on Space, LAPAN is mandate to provide high resolution satellite data, and based on a roadmap for provision of satellite data in 2017, LAPAN will provide a VHRSI data reception facility through direct receiving system (DRS). This will be more efficient than other methods in providing the data. Priority provision of satellite data is for acquiring Pleiades and TerraSAR-X operating in the frequency range 8 GHz (X-Band). Therefore, to receive both data, it requires antenna subsystem with optimum coverage throughout Indonesia. Parameters to obtain the minimum antenna specifications include Free Space Loss (FSL), Carrier to Noise Ratio (C/No) and Antenna Gain to Noise Temperature (G/T). The calculation of G/T antenna is done for both satellites based on satellite parameters and analysis of antenna product availability in the market. Based on the calculation of satellite parameters shows that the minimum G/T value with the elevation of 5 degrees is 27.71 dB/K for Pleiades data reception and the minimum G/T value of 26.10 dB/K for the TerraSAR-X data reception. In general, the minimum G/T value for receiving the Pleiades and TerraSAR-X data is at 28 dB/K. While based on the calculation of antenna products availability in the market is require G/T value of 33.45 dB /K for the elevation of 5 degrees with a diameter of 7.5 mm antenna. This can be conclude that the antenna products meets the minimum requirements specification and to receive both satellite data. Â However, both calculation for the antenna subsystem still will be evaluated further in order to be directly installed at Parepare Remote Earth Station (SPBJ), South Sulawesi.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


