UTILIZATION OF NEAR REAL-TIME NOAA-AVHRR SATELLITE OUTPUT FOR EL NIÑO INDUCED DROUGHT ANALYSIS IN INDONESIA (CASE STUDY: EL NIÑO 2015 INDUCED DROUGHT IN SOUTH SULAWESI)
DOI:
https://doi.org/10.30536/j.ijreses.2016.v13.a2450Keywords:
drought, near real-time monitoring, NOAA-AVHRR, VHI, VCI, TCI, El NiñoAbstract
Drought is becoming one of the most important issues for government and policy makers. National food security highly concerned, especially when drought occurred in food production center areas. Climate variability, especially in South Sulawesi as one of the primary national rice production centers is influenced by global climate phenomena such as El Niño Southern Oscillation or ENSO. This phenomenon can lead to drought occurrences. Monitoring of drought potential occurrences in near real-time manner becomes a primary key element to anticipate the drought impact. This study was conducted to determine potential occurrences and the evolution of drought that occurred as a result of the 2015 El Niño event using the Vegetation Health Index (VHI) from the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) satellite products. Composites analysis was performed using weekly Smoothed and Normalized Difference Vegetation Index (or smoothed NDVI) (SMN), Smoothed Brightness Temperature Index (SMT), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), and Vegetation Health Index (VHI).  This data were obtained from The Center for Satellite Applications and Research (STAR) - Global Vegetation Health Products (NOAA) website during 35-year period (1981-2015). Lowest potential drought occurrences (highest VHI and VCI value) caused by 2015 El Niño is showed by composite analysis result. Strong El Niño induced drought over the study area indicated by decreasing VHI value started at week 21st. Spatial characteristic differences in drought occurrences observed, especially on the west coast and east coast of South Sulawesi during strong El Niño. Weekly evolution of potential drought due to the El Niño impact in 2015 indicated by lower VHI values (VHI < 40) concentrated on the east coast of South Sulawesi, and then spread to another region along with the El Nino stage. Â
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Author (s)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


