IDENTIFICATION AND CLASSIFICATION OF FOREST TYPES USING DATA LANDSAT 8 IN KARO, DAIRI, AND SAMOSIR DISTRICTS, NORTH SUMATRA
DOI:
https://doi.org/10.30536/j.ijreses.2016.v13.a2477Keywords:
identification, classification, forest types, Landsat 8Abstract
Forests have important roles in terms of carbon storage and other values. Various studies have been conducted to identify and distinguish the forest from non-forest classes. Several forest types classes such as secondary forests and plantations should be distinguished related to the restoration and rehabilitation program for dealing with climate change. The study was carried out to distinguish several classes of important forests such as the primary dryland forests, secondary dryland forest, and plantation forests using Landsat 8 to develop identification techniques of specific forests classes. The study areas selected were forest areas in three districts, namely Karo, Dairi, and Samosir of North Sumatera Province. The results showed that using composite RGB 654 of Landsat 8 imagery based on test results OIF for the forest classification, the forests could be distinguished with other land covers. Digital classification can be combined with the visual classification known as a hybrid classification method, especially if there are difficulties in border demarcation between the two types of forest classes or two classes of land covers.
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Author (s)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


