COMPARISON OF MODEL ACCURACY IN TREE CANOPY DENSITY ESTIMATION USING SINGLE BAND, VEGETATION INDICES AND FOREST CANOPY DENSITY (FCD) BASED ON LANDSAT-8 IMAGERY (CASE STUDY: PEAT SWAMP FOREST IN RIAU PROVINCE)
DOI:
https://doi.org/10.30536/j.ijreses.2018.v15.a2845Keywords:
Tree canopy density, single band, vegetation indices, FCDAbstract
Identification of a tree canopy density information may use remote sensing data such as Landsat-8 imagery. Remote sensing technology such as digital image processing methods could be used to estimate the tree canopy density. The purpose of this research was to compare the results of accuracy of each method for estimating the tree canopy density and determine the best method for mapping the tree canopy density at the site of research. The methods used in the estimation of the tree canopy density are Single band (green, red, and near-infrared band), vegetation indices (NDVI, SAVI, and MSARVI), and Forest Canopy Density (FCD) model. The test results showed that the accuracy of each method: green 73.66%, red 75.63%, near-infrared 75.26%, NDVI 79.42%, SAVI 82.01%, MSARVI 82.65%, and FCD model 81.27%. Comparison of the accuracy results from the seventh methods indicated that MSARVI is the best method to estimate tree canopy density based on Landsat-8 at the site of research. Estimation tree canopy density with MSARVI method showed that the canopy density at the site of research predominantly 60-70% which spread evenly.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


