LINEAMENT DENSITY INFORMATION EXTRACTION USING DEM SRTM DATA TO PREDICT THE MINERAL POTENTIAL ZONES
DOI:
https://doi.org/10.30536/j.ijreses.2016.v13.a2704Keywords:
geology, remote sensing, lineament, density, mineral, DEMAbstract
Utilization of remote sensing in geology is based on some identification of main parameters. They were the relief or morphology, flow patterns, and lineament. So it was necessary to study extraction method based on those parameters. This study aimed to obtain lineament density zone in the Geumpang area, Aceh, associated with mineral resource potential. Information of lineament density using remote sensing data was expected to help solve the problems that arised in the activities of early exploration, the difficulty of finding the prospect areas, so that the activities of pre-exploration always required a wide area and required a long time to determine the location of mineral prospect areas, it would have a direct impact on the financial of exploration activities. The used data was Landsat 8 and DEM SRTM of 30 m. The used method was processing of shaded relief on DEM data with the azimuth angle 0o, 45o, 90o, and 135o, then the result of hill shade process was done overlay, so DEM seen from all different azimuth angles. The results of the overlay were processed using the algorithm LINE with parameters such as the radius of the filter in pixels (RADI) 60, the threshold for edge gradient (GTHR) 120, the threshold for the curve length (LTHR) 100, the threshold for line fitting error (FTHR) 3, threshold for angular (ATHR) 30, and the threshold for linking distance (DTHR) 100. Vector lineament data from LINE algorithm process then performed density analysis to obtain lineament density zoning. Results from the study showed that the area has a high density lineament associated with mineral potency, so it was useful for exploration activities to minimize the survey area.
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


