DETECTING THE SPATIAL DISTRIBUTION OF SETTLEMENTS ON VOLCANIC REGION USING IMAGE LANDSAT-8 OLI IMAGERY
DOI:
https://doi.org/10.30536/j.ijreses.2014.v11.a2602Keywords:
Settlement, Volcanic Landforms, Sinabung Volcano, NDBIAbstract
Geologically, Indonesia region is on track ring of fire, brings the consequence that the danger of volcanic eruption could occur at any time. Information sites where the settlement is located in the affected areas on emergency response process is needed in quick time. The availability of up to date data is important because it illustrates the actual condition of the region. Active volcanic landforms ranging from the crater to footslope in general is prone area to volcanic eruption, either by the threat of lava flows, pyroclastic falls, or lahars. This study aims to detect the spatial distribution of the settlement on volcanic region using Landsat-8 OLI. Parameters used for the detection of settlements is Normalized Difference Build-up Index (NDBI). Research methods include radiometric correction, delineation of the boundaries of volcanic landforms, NDBI value extraction, extraction of settlement areas, as well as the accuracy assesment.  Study area is Sinabung Volcano region located in the province of North Sumatera. Recently, the volcano experienced a devastating and catastrophic eruption. The results showed that the spatial distribution of settlements on volcanic landforms can be detected quickly from Landsat-8 OLI based on NDBI parameters with a sufficient degree of accuracy.
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Author (s)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


