MODIFICATION OF INPUT IMAGES FOR IMPROVING THE ACCURACY OF RICE FIELD CLASSIFICATION USING MODIS DATA
DOI:
https://doi.org/10.30536/j.ijreses.2010.v7.a1541Keywords:
rice field mapping, modified classification, temporal analysis, ModisAbstract
The standard image classification method typically uses multispectral imageryon one acquisition date as an input for classification. Rice fields exhibit high variability inland cover states, which influences their reflectance. Using the existing standard method forrice field classification may increase errors of commission and omission, thereby reducingclassification accuracy. This study utilised temporal variance in a vegetation index as amodified input image for rice field classification. The results showed that classification ofrice fields using modified input images provided a better result. Using the modifiedclassification input improved the correspondence between rice field area obtained from theclassification result and reference data (R2 increased from 0.2557 to 0.9656 for regencylevelcomparisons and from 0.5045 to 0.8698 for district-level comparisons). Theclassification accuracy and the estimated Kappa value also increased when using themodified classification input compared to the standard method, from 66.33 to 83.73 andfrom 0.49 to 0.77, respectively. The commission error, omission error, and Kappa variancedecreased from 68.11 to 42.36, 28.48 to 27.97, and 0.00159 to 0.00039, respectively, whenusing modified input images compared to the standard method. The Kappa analysisconcluded that there are significant differences between the procedure developed in thisstudy and the standard method for rice field classification. Consequently, the modifiedclassification method developed here is significant improvement over the standardprocedure.
Downloads
Published
Issue
Section
License
Copyright (c) 2010 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


