NUMERICAL CALCULATION FOR THE RESIDUAL TIDAL CURRENT IN BENOA BAY-BALI ISLAND
DOI:
https://doi.org/10.30536/j.ijreses.2005.v2.a1362Keywords:
model, simulation, tidal current, residual currentAbstract
Princeton Ocean Model (POM) was used to calculate the tidal current and M2-residual current in Benoa Bay using barotropic model (mode 2). The model was forced by tidal elevation, which was given along the open boundary condition using tide data prediction from Hydro-Oceanography Division-Indonesian Navy (DISHIDROS TNI-AL). The computed tidal current and residual current have been compared with both data in Benoa Bay, that are data of the open boundary of Benoa Bay and condition of Benoa Bay after developed a port and reclamation of Serangan Island. The maximum velocity of tidal current for open boundary conditions at flood tide is 0.71 m/sec, whereas at ebb tide is 0.65 m/sec and the maximum velocity after developed a port and reclamation of Serangan Island, at flood tide, is 0.69 m/sec. The simulation of residual current with particular emphasis on predominant constituent of M2 after developed a port and reclamation of Serangan Island shows a strong flow at the western part of Tanjung Benoa and Benoa Harbor and also at bay mouth between Serangan Island and Tanjung Benoa. Maximum velocity of M2-residual current is 0.0585 m/sec by the simulation and showed that the
current which was produced forming two eddies in the bay of which one eddy is in the mouth of bay in southern part. The residual current for open boundary condition of bay shows four eddies circulation, one big eddies and the others small. The anticlockwise circulation occurs in the inner part of the bay.
Downloads
Published
Issue
Section
License
Copyright (c) 2005 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


