ESTIMATION OF TUNA FISHING GROUND IN LOW LATITUDE REGION USING SEA SURFACE HEIGHT GRADIENT DERIVED FROM SATELLITE ALTIMETRY: APPLICATION TO NORTHEASTERN INDIAN OCEAN
DOI:
https://doi.org/10.30536/j.ijreses.2006.v3.a1209Keywords:
sea surface altimeter, sea surface gradient, remote sensing, fishing ground search, hook rate,, fishery resource managementAbstract
In order to improve the method for prediction of tuna fishing ground, the modification of the analysis about satellite altimeter data was made as trial. In this study, we focused on the satellite altimeter, TOPEX/POSEIDON series, to improve the method of fishing ground prediction. Fishery data were supplied as hook rate by local fishing information around Indonesia and hearing infromation. The gradient of sea surface height is calculated between the neighbor grid which has the maximum gradient. Result showed that the fishery data with hook rate over 0.8 are grouped in a zone from 1.0E-06 of sea prediction of fishing ground quantitatively, but also reasonable accuracy as shown in the change in the standard deviation. This method can be utilized for the effective fishing plan with the resource protection and the economy in the fishing operation in near future.
Published
Issue
Section
License
Copyright (c) 2006 Author (s)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


