PROGRESS FOR STABLE ARTIFICIAL LIGHTS DISTRIBUTION EXTRVCTION ACCURACY AND ESTIMATION OF ELECTRIC] POWER CONSUMPTION BY MEANS OF DMSP/OLS NIGHTTIME IMAGERY
DOI:
https://doi.org/10.30536/j.ijreses.2004.v1.a1326Keywords:
DMSP/OLS-VIS, NRF filtration, Deltaic ModelAbstract
The Noise Reduction Filter (NRF) that is developed by the authors is applied to extract artificial nightlight components of a time series DMSP/OLS-VIS dataset. High frequency components from the time series DMSP/OLS-VIS dataset are exhausted and a direct current component is extracted by the NRF that is one of the Fourier analysis techniques. The inference of cloud and other disturbance noise are also removed, and a stable artificial nightlight is extracted by the NRF filtration. The intensity value in high power light areas observed by DMSP/OLS-VIS is saturated because of narrow dynamic range of the sensor gain. A simple model called "Deltaic Model" developed by authors corrected those saturated value. Verification of the accuracy of correction methods above described is carried out by comparison with electric power consumption of the calculated values from the model and statistical ones of each prefecture in Japan. Correlation of the values is satisfactory as shown R2 = 0.725. The results of this work shows the remote sensing method by using the DMSP/OLS-VIS nighttime imagery with the correction methods above described is useful to estimate the electric power consumption through a year of fixed areas.
Downloads
Published
Issue
Section
License
Copyright (c) 2004 Author (S)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


