CLASSIFICATION OF POLARIMETRIC-SAR DATA WITH NEURAL NETWORK USING COMBINED FEATURES EXTRACTED FROM SCATTERING MODELS AND TEXTURE ANALYSIS
DOI:
https://doi.org/10.30536/j.ijreses.2007.v4.a1212Keywords:
Polarimetric-SAR, scattering model, freeman decomposition, Cloude decomposition, texture analysis, feature extraction, classification, neural networksAbstract
This paper shows a study on an alternative method for classification of polarimetric-SAR data. The method is designed by integrating the comined features extracted from two scattering models(i.e., freeman decomposition model and cloud decomposition model) and textural analysis with distribution-free neural network classifier. The neural network classifier (wich is based on a feedforward back-propagation neural network architecture) properly exploits the information in the combined features for providing high accuracy classification result. The effectiveness of the proposed method is demonstrated using E-SAR polarimetric data acquired on the area of Penajam, East Kalimantan, Indonesia.
Downloads
Published
Issue
Section
License
Copyright (c) 2007 Author (s)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice for the International Journal of Remote Sensing and Earth Sciences (IJReSES)
Copyright Holder: Author(s).
By submitting an article to IJReSES, author(s) agree to the following terms:
1. Grant of Publishing Rights: Authors grant IJReSES the license to publish the article and to identify itself as the original publisher. This includes the right to make the article available in all forms and media.
2. Commercial Rights: Authors grant IJReSES the rights to produce and sell hardcopy volumes of the journal. These volumes may be purchased by libraries, individuals, or other entities.
3. Third-Party Use: Authors agree to allow any third party to freely use the article, provided that the original authors are credited and the article is cited appropriately. This facilitates the dissemination and impact of the work.
4. Creative Commons License: The article is distributed under the Creative Commons Attribution non Commercial Share Alike 4.0 License (CC BY-NC-SA 4.0). This license allows others to distribute, remix, adapt, and build upon the work, even commercially, as long as the original author is credited for the original creation.
5. Associated Published Material: Unless otherwise stated, any associated published material (such as supplementary data, graphics, and multimedia) is distributed under the same CC BY-NC-SA 4.0 License.
By adhering to these terms, authors ensure the wide dissemination and accessibility of their work, contributing to the advancement of knowledge in the fields of remote sensing and earth sciences.


