A Review on Development of Porous Aluminosilicate-Based Zeolite Adsorbent for Heavy Metal Pollution Treatment

Authors

  • Muh. Supwatul Hakim Department of Chemistry, Universitas Palangka Raya, Palangka Raya, 73111, Indonesia https://orcid.org/0000-0002-1374-7870
  • Rendy Muhamad Iqbal Department of Chemistry, Universitas Palangka Raya, Palangka Raya, 73111, Indonesia https://orcid.org/0000-0002-9172-8368
  • Fildzah 'Adany Research Center for Chemistry, National Agency of Research and Innovation (BRIN), Tangerang Selatan, Indonesia
  • Riandy Putra Department of Chemistry, Universitas Palangka Raya, Palangka Raya, 73111, Indonesia https://orcid.org/0000-0001-9094-3712
  • Ici Nitriany Department of Chemistry, Universitas Palangka Raya, Palangka Raya, 73111, Indonesia
  • Idam Sulastri Telaumbanua Department of Chemistry, Universitas Palangka Raya, Palangka Raya, 73111, Indonesia
  • Raya Uli Sitorus Department of Chemistry, Universitas Palangka Raya, Palangka Raya, 73111, Indonesia
  • Rey Kamala Dewi Department of Chemistry, Universitas Palangka Raya, Palangka Raya, 73111, Indonesia

DOI:

https://doi.org/10.55981/jsmi.2024.1076

Keywords:

Zeolite, Adsorbent, Wastewater, Heavy Metals, Environmental

Abstract

Heavy metal contamination endangers human health and has been identified as a global issue. The rising concentration of heavy metals in industrial and domestic wastewater has prompted the quest for effective technologies and treatments to remove them. Zeolite is a promising material for eliminating heavy metals from diverse sources that pollute wastewater. Zeolite is a crystal comprised of hydrated aluminosilicates of alkali and alkaline earth metals in a threedimensional crystal network composed of easily controllable SiO4 4− and AlO4 5− . This review focuses on the critical analysis of the application of several zeolites for the adsorption of heavy metals from wastewater, namely Cd(II), As(III and V), Cr(III and VI), Cu(II), Pb(II), Ni(II), Mn(II), and Hg(II). The results of heavy metal removal reported by zeolites are summarized, and the chemical modification of zeolites with acid/base/salt reagents, surfactants, and metal reagents has been investigated, compared, and discussed. The adsorption/desorption capabilities, systems, operational parameters, isotherms, and kinetics of zeolites are then explained and compared.

Downloads

Download data is not yet available.

References

M. Pujari and D. Kapoor. “1 - Heavy metals in the ecosystem: Sources and their effects,” in Heavy Metals in The Environment. V. Kumar, A. Sharma, and A. Cerdà, Eds. Elsevier, 2021, pp. 1–7.

R. Singh, N. Gautam, A. Mishra, and R. Gupta. “Heavy metals and living systems: An overview.” Indian J Pharmacol, vol. 43, no. 3, pp. 246, 2011.

J. Briffa, E. Sinagra, and R. Blundell. “Heavy metal pollution in the environment and their toxicological effects on humans.” Heliyon, vol. 6, no. 9, p. e04691, Sep. 2020.

S. Mitra, A. J. Chakraborty, A. M. Tareq, T. B. Emran, F. Nainu, A. Khusro, A. M. Idris, M. U. Khandaker, H. Osman, F. A. Alhumaydhi, and J. Simal-Gandara. “Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity.” J King Saud Univ Sci, vol. 34, no. 3, p. 101865, Apr. 2022.

E. Singh, A. Kumar, R. Mishra, S. You, L. Singh, S. Kumar, and R. Kumar. “Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution.” Bioresour. Technol., vol. 320, no. A, p. 124278, Jan. 2021.

A. Luptakova, S. Ubaldini, E. Macingova, P. Fornari, and V. Giuliano. “Application of physical–chemical and biological–chemical methods for heavy metals removal from acid mine drainage.” Process Biochemistry, vol. 47, no. 11, pp. 1633–1639, 2012.

M. Yadav, G. Singh, and R. N. Jadeja. “Physical and chemical methods for heavy metal removal,” in Pollutants and Water Management: Resources, Strategies and Scarcit. P. Singh, R. Singh, W. K. Singh, and R . Bhadouria, Eds. 2021, pp. 377–397.

A. M. Hamdan, H. Abd-El-Mageed, and N. Ghanem. “Biological treatment of hazardous heavy metals by Streptomyces rochei ANH for sustainable water management in agriculture.” Sci. Rep., vol. 11, no. 1, p. 9314, 2021.

J. Ru, X. Wang, F. Wang, X. Cui, X. Du, and X. Lu. “UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism.” Ecotoxicol. Environ. Saf., vol. 208, p. 111577, Jan. 2021.

M. Aškrabić, M. Vyšvařil, D. Zakić, A. Savić, and B. Stevanović. “Effects of natural zeolite addition on the properties of lime putty-based rendering mortars.” Constr. Build. Mater., vol. 270, p. 121363, Feb. 2021.

R. Saputra. “Pemanfaatan zeolit sintesis sebagai alternatif pengolahan limbah industri.” Buletin IPT, no. 1, pp. 8–20, 2006.

S. S. Obaid, D. K. Gaikwad, M. I. Sayyed, K. AL-Rashdi, and P. P. Pawar. “Heavy metal ions removal from waste water bythe natural zeolites.” Mater. Today Proc., vol. 5, no. 9, pp. 17930–17934, 2018.

S. Prodinger and M. A. Derewinski. “Synthetic zeolites and their characterization,” in Nanoporous Materials for Molecule Separation and Conversion. J. Liu and F. Ding, Eds. Elsevier, 2020, pp. 65–88.

M. Aškrabić, M. Vyšvařil, D. Zakić, A. Savić, and B. Stevanović. “Effects of natural zeolite addition on the properties of lime putty-based rendering mortars.” Constr Build Mater, vol. 270, pp. 121363, 2021.

A. Maghfirah, M. M. Ilmi, A. T. N. Fajar, and G. T. M. Kadja. “A review on the green synthesis of hierarchically porous zeolite.” Mater. Today Chem., vol. 17, p. 100348, Sep. 2020.

L. Velarde, M. S. Nabavi, E. Escalera, M. L. Antti, and F. Akhtar. “Adsorption of heavy metals on natural zeolites: A review,” Chemosphere, vol. 328, p. 138508, Jul. 2023.

M. Hong, L. Yu, Y. Wang, J. Zhang, Z. Chen, L. Dong, Q. Zan, and R. Li. “Heavy metal adsorption with zeolites: The role of hierarchical pore architecture.” Chemical Engineering Journal, vol. 359, pp. 363–372, Mar. 2019.

E. I. Ugwu, A. Othmani, and C. C. Nnaji. “A review on zeolites as cost-effective adsorbents for removal of heavy metals from aqueous environment.” International Journal of Environmental Science and Technology 2021 19:8, vol. 19, no. 8, pp. 8061–8084, Aug. 2021.

Y. Li and J. Yu. “New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations.” Chem. Rev., vol. 114, no. 14, pp. 7268–7316, Jul. 2014.

P. Kononov, I. Kononova, V. Moshnikov, E. Maraeva, and O. Trubetskaya. “Step-by-step modeling and demetallation experimental study on the porous structure in zeolites.” Molecules, vol. 27, no. 23. 2022.

D. Georgiev, B. Bogdanov, K. Angelova, I. Markovska, and Y. Hristov Assen. Zeolites-structure, classification, current trends in zeolite synthesis: Review, in: International Science Conference, Bulgaria, 2009.

L.B. McCusker, and C. Baerlocher. Chapter 3 Zeolite structures, in: Introduction to Zeolite Science and Practice, 2001.

M. Golomeova and A. Zendelska. “Application of some natural porous raw materials for removal of lead and zinc from aqueous solutions,” in Microporous and Mesoporous Materials, R. S. Dariani, Ed. Tehran: InTech, 2016.

M. Król. “Natural vs. synthetic zeolites.” Crystals, vol. 10, no. 7. 2020.

N. Elboughdiri. “The use of natural zeolite to remove heavy metals Cu (II), Pb (II) and Cd (II), from industrial wastewater.” Cogent Eng., vol. 7, no. 1, p. 1782623, Jan. 2020.

M. Marwan, E. Indarti, D. Darmadi, W. Rinaldi, D. Hamzah, and T. Rinaldi. “Production of triacetin by microwave assisted esterification of glycerol using activated natural zeolite.” Bulletin of Chemical Reaction Engineering & Catalysis, vol. 14, no. 3, pp. 672–677, 2019.

G. Tsintskaladze, L. Eprikashvili, T. Urushadze, T. Kordzakhia, T. Sharashenidze, M. Zautashvili, and M. Burjanadze. “Nanomodified natural zeolite as a fertilizer of prolonged activity.” Ann. Agrar. Sci., vol. 14, no. 3, pp. 163–168, 2016.

V. E. Copcia, C. Luchian, S. Dunca, N. Bilba, and C. M. Hristodor. “Antibacterial activity of silver-modified natural clinoptilolite,” J. Mater. Sci., vol. 46, pp. 7121–7128, 2011.

M. Ulmanu, V. I. Inglezakis, and A. A. Zorpas. “Mineralogy of natural zeolites,” in Handbook of Natural Zeolites, vol. 18, Bentham Science Publishers Ltd., 2012, pp. 52–69.

M. Ulmanu and I. Anger. “Physical and Chemical Properties,” in Handbook of Natural Zeolites. M. Ulmanu and I. Anger, Eds. BENTHAM SCIENCE PUBLISHERS, 2012, pp. 70–102.

A. Khaleque, M. M. Alam, M. Hoque, S. Mondal, J. B. Haider, B. Xu, M. A. H. Johir, A. K. Karmakar, J. L. Zhou, M. B. Ahmed, and M. A. Moni. “Zeolite synthesis from low-cost materials and environmental applications: A review.” Environmental Advances, vol. 2, p. 100019, Dec. 2020.

H. V. Tran, T. V. Nguyen, N. D. Nguyen, B. Piro, and C. D. Huynh. “A nanocomposite prepared from FeOOH and N-doped carbon nanosheets as a peroxidase mimic, and its application to enzymatic sensing of glucose in human urine.” Microchimica Acta, vol. 185, no. 5, p. 270, May 2018.

M. R. Adam, N. M. Salleh, M. H. D. Othman, T. Matsuura, M. H. Ali, M. H. Puteh, A. F. Ismail, M. A. Rahman, and J. Jaafar. “The adsorptive removal of chromium (VI) in aqueous solution by novel natural zeolite based hollow fibre ceramic membrane.” J. Environ. Manage., vol. 224, pp. 252–262, Oct. 2018.

A. Ates and G. Akgül. “Modification of natural zeolite with NaOH for removal of manganese in drinking water.” Powder Technol., vol. 287, pp. 285–291, Jan. 2016.

R. Cortés-Martínez, V. Martínez-Miranda, M. Solache-Ríos, and I. García-Sosa. “Evaluation of natural and surfactant-modified zeolites in the removal of cadmium from aqueous solutions.” Sep. Sci. Technol., vol. 39, no. 11, pp. 2711–2730, Aug. 2004.

E. Wibowo, Sutisna, M. Rokhmat, R. Murniati, Khairurrijal, and M. Abdullah. “Utilization of natural zeolite as sorbent material for seawater desalination.” Procedia Eng., vol. 170, pp. 8–13, Jan. 2017.

M. W. Ackley, S. U. Rege, and H. Saxena. “Application of natural zeolites in the purification and separation of gases.” Microporous and Mesoporous Materials, vol. 61, no. 1, pp. 25–42, 2003.

T.E. Banon and C, Suharto. “adsorption of ammonia with natural zeolite activated with Ammonium Nitrate solution.” GRADIEN: Jurnal Ilmiah MIPA, vol. 4, no. 2, pp. 354–360, 2008.

S. M. Auerbach, K. A. Carrado, and P. K. Dutta, Handbook of Layered Materials. CRC press, 2004.

M. K. Doula. “Synthesis of a clinoptilolite–Fe system with high Cu sorption capacity.” Chemosphere, vol. 67, no. 4, pp. 731–740, Mar. 2007.

M. Foldesova, P. Hudec, and P. Dilinger. “Chemically modified zeolites: surfaces and interaction with Cs and Co.” Petroleum and Coal, vol. 49, no. 2, pp. 60–63, 2007.

H. G. Mobtaker, H. Kazemian, M. A. Namdar, A. Malekinejad, and M. R. Pakzad. “Ion exchange behavior of zeolites A and P synthesized using natural clinoptilolite.” Iran. J. Chem. Chem. Eng., vol. 27, no. 2, pp. 111–117, Jun. 2008.

V. K. Jha, M. Nagae, M. Matsuda, and M. Miyake. “Zeolite formation from coal fly ash and heavy metal ion removal characteristics of thus-obtained Zeolite X in multi-metal systems.” J. Environ. Manage., vol. 90, no. 8, pp. 2507–2514, Jun. 2009.

A. T. Adeleye, K. I. John, P. G. Adeleye, A. A. Akande, and O. O. Banjoko. “One-dimensional titanate nanotube materials: Heterogeneous solid catalysts for sustainable synthesis of biofuel precursors/value-added chemicals—a review.” J. Mater. Sci., vol. 56, pp. 1–26, 2021.

Y. Sugano, R. Sahara, T. Murakami, T. Narushima, Y. Iguchi, and C. Ouchi. “Hydrothermal synthesis of zeolite a using blast furnace slag.” ISIJ International, vol. 45, no. 6, pp. 937–945, 2005.

Z. G. L. V. Sari, H. Younesi, and H. Kazemian. “Synthesis of nanosized ZSM-5 zeolite using extracted silica from rice husk without adding any alumina source.” Applied Nanoscience (Switzerland), vol. 5, no. 6, pp. 737–745, Aug. 2015.

A. K. Jamil, O. Muraza, and A. M. Al-Amer. “Microwave-assisted solvothermal synthesis of ZSM-22 zeolite with controllable crystal lengths.” Particuology, vol. 24, pp. 138–141, Feb. 2016.

J. Wittayakun, P. Khemthong, and S. Prayoonpokarach. “Synthesis and characterization of zeolite NaY from rice husk silica.” Korean Journal of Chemical Engineering, vol. 25, no. 4, pp. 861–864, Jul. 2008.

T. Wajima. “Synthesis of zeolite from blast furnace slag using alkali fusion with addition of EDTA,” Adv. Mat. Res., vol. 1044–1045, pp. 124–127, 2014.

A. A. Shoppert, I. V. Loginova, L. I. Chaikin, and D. A. Rogozhnikov. “Alkali fusion-leaching method for comprehensive processing of fly ash.” KnE Materials Science, vol. 2, no. 2, p. 89, Sep. 2017.

Z. Hu, B. Zhao, S. Zhang, Z. Tan, X. Liu, and J. Cao. “Rapid and high efficient synthesis of zeolite W by gel-like-solid phase method.” Microporous and Mesoporous Materials, vol. 281, pp. 75–83, Jun. 2019.

Y. Jin, L. Li, Z. Liu, S. Zhu, and D. Wang. “Synthesis and characterization of low-cost zeolite NaA from coal gangue by hydrothermal method.” Advanced Powder Technology, vol. 32, no. 3, pp. 791–801, 2021.

T. A. Aragaw and A. A. Ayalew. “Removal of water hardness using zeolite synthesized from Ethiopian kaolin by hydrothermal method.” Water Pract. Technol., vol. 14, no. 1, pp. 145–159, Dec. 2018.

U. Tyagi, M. Aslam, and A. K. Sarma. “Characterization of green diesel: Existing standards and beyond, in Green Diesel: An Alternative to Biodiesel and Petrodiesel. M. Aslam, S. Shivaji Maktedar, and A. K. Sarma, Eds., Singapore: Springer Nature Singapore, 2022, pp. 249–263.

S. K. Wahono, D. J. Prasetyo, T. H. Jatmiko, A. Suwanto, D. Pratiwi, and K. Vasilev. “Transformation of mordenite-clinoptilolite natural zeolite at different calcination temperatures,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2019, p. 12009.

C. Belviso, F. Cavalcante, A. Lettino, and S. Fiore. “Effects of ultrasonic treatment on zeolite synthesized from coal fly ash.” Ultrason. Sonochem., vol. 18, no. 2, pp. 661–668, 2011.

M. Bilici Baskan and A. Pala. “Removal of arsenic from drinking water using modified natural zeolite.” Desalination, vol. 281, pp. 396–403, Oct. 2011.

Y. D. Ngapa, S. Sugiarti, and Z. Abidin. “Hydrothermal transformation of natural zeolite from Ende-NTT and its application as adsorbent of cationic dye.” Indonesian Journal of Chemistry, vol. 16, no. 2, p. 138, Mar. 2018.

M. Yuan, T. Xie, G. Yan, Q. Chen, and L. Wang. “Effective removal of Pb2+ from aqueous solutions by magnetically modified zeolite.” Powder Technol., vol. 332, pp. 234–241, Jun. 2018.

E. F. Aboelfetoh, H. G. El‐Attar, and E. A. Okba. “Facile synthesis of magnetic and porous zeolite/SnFe2O4 nanocomposite for cationic and anionic dyes deterioration.” Microporous and Mesoporous Materials, vol. 357, p. 112611, Jul. 2023.

E. G. Filatova and Y. N. Pozhidaev. “Development of natural zeolites regeneration scheme.” IOP Conf. Ser. Earth Environ. Sci., vol. 459, no. 3, p. 032035, Apr. 2020.

G. M. P. Kumara and K. Kawamoto. “Use of natural zeolite and its mixtures to refine high-concentrated heavy metal-contaminated wastewater: An investigation of simultaneous removal of Cd (II) and Pb (II) by batch adsorption method.” Water Air Soil Pollut., vol. 232, no. 11, pp. 1–17, Nov. 2021.

B. de Gennaro, P. Aprea, B. Liguori, B. Galzerano, A. Peluso, and D. Caputo. “Zeolite-rich composite materials for environmental remediation: Arsenic removal from water.” Applied Sciences, vol. 10, no. 19, p. 6939, Oct. 2020.

J. Mendoza-Barrón, A. Jacobo-Azuara, R. Levya-Ramos, M. S. Berber-Mendoza, R. M. Guerrero-Coronado, L. Fuentes-Rubio, and J. M. Martinez-Rosales. “Adsorption of arsenic (V) from a water solution onto a surfactant-modified zeolite.” Adsorption, vol. 17, no. 3, pp. 489–496, Jun. 2011.

B. de Gennaro, L. Catalanotti, R. S. Bowman, and M. Mercurio. “Anion exchange selectivity of surfactant modified clinoptilolite-rich tuff for environmental remediation.” J. Colloid Interface Sci., vol. 430, pp. 178–183, 2014.

Y. Abdellaoui, B. E. Ibrahimi, H. A. Oualid, Z. Kassab, C. Quintal-Franco, G. Giácoman-Vallejos, and P. Gamero-Melo. “Iron-zirconium microwave-assisted modification of small-pore zeolite W and its alginate composites for enhanced aqueous removal of As(V) ions: Experimental and theoretical studies.” Chemical Engineering Journal, vol. 421, pp. 129909, 2021.

C. Zhou, C. Han, X. Min, and T. Yang. “Enhancing arsenic removal from acidic wastewater using zeolite‐supported sulfide nanoscale zero‐valent iron: the role of sulfur and copper.” Journal of Chemical Technology & Biotechnology, vol. 96, no. 7, pp. 2042–2052, Jul. 2021.

R. Soni and D. P. Shukla. “Synthesis of fly ash based zeolite-reduced graphene oxide composite and its evaluation as an adsorbent for arsenic removal.” Chemosphere, vol. 219, pp. 504–509, 2019.

V. Campos, L.C. Morais, and P.M. Buchler. “Removal of chromate from aqueous solution using treated natural zeolite.” Environmental Geology, vol. 52, no. 8, pp. 1521–1525, 2007.

G. K. R. Angaru, Y.-L. Choi, L. P. Lingamdinne, J.-S. Choi, D.-S. Kim, J. R. Koduru, J.-K. Yang, Y.-Y. Chang. “Facile synthesis of economical feasible fly ash–based zeolite–supported nano zerovalent iron and nickel bimetallic composite for the potential removal of heavy metals from industrial effluents.” Chemosphere, vol. 267, p. 128889, Mar. 2021.

A. L. Wani, A. Ara, and J. A. Usmani. “Lead toxicity: A review.” Interdiscip. Toxicol., vol. 8, no. 2, pp. 55–64, Jun. 2015.

P. N. Obasi and B. B. Akudinobi. “Potential health risk and levels of heavy metals in water resources of lead–zinc mining communities of Abakaliki, southeast Nigeria.” Appl. Water Sci., vol. 10, no. 7, p. 184, 2020.

P. Praipipat, P. Ngamsurach, and N. Roopkhan. “Zeolite A powder and beads from sugarcane bagasse fly ash modified with iron(III) oxide-hydroxide for lead adsorption.” Sci Rep, vol. 13, no. 1, pp. 1873, 2023.

Y. Lv, B. Ma, Y. Liu, C. Wang, and Y. Chen. “Adsorption behavior and mechanism of mixed heavy metal ions by zeolite adsorbent prepared from lithium leach residue.” Microporous and Mesoporous Materials, vol. 329, p. 111553, 2022.

N. Bu, X. Liu, S. Song, J. Liu, Q. Yang, R. Li, F. Zheng, L. Yan, Q. Zhen, and J. Zhang. “Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution.” Advanced Powder Technology, vol. 31, no. 7, pp. 2699–2710, Jul. 2020.

S. Sivalingam and S. Sen. “Rapid ultrasound assisted hydrothermal synthesis of highly pure nanozeolite X from fly ash for efficient treatment of industrial effluent.” Chemosphere, vol. 210, pp. 816–823, Nov. 2018.

L. Zhu, J. Ji, S. Wang, C. Xu, K. Yang, and M. Xu. “Removal of Pb(II) from wastewater using Al2O3-NaA zeolite composite hollow fiber membranes synthesized from solid waste coal fly ash.” Chemosphere, vol. 206, pp. 278–284, Sep. 2018.

H. S. Ibrahim, T. S. Jamil, and E. Z. Hegazy. “Application of zeolite prepared from Egyptian kaolin for the removal of heavy metals: II. Isotherm models.” J. Hazard Mater., vol. 182, no. 1–3, pp. 842–847, Oct. 2010.

T. Puspitasari, G. T. M. Kadja, C. L. Radiman, D. Darwis, and R. R. Mukti. “Two-step preparation of amidoxime-functionalized natural zeolites hybrids for the removal of Pb2+ ions in aqueous environment.” Mater. Chem. Phys., vol. 216, pp. 197–205, Sep. 2018.

D. P. De-La-Vega, C. González, C. A. Escalante, J. Gallego, M. Salamanca, and L. Manrique-Losada. “Uso de zeolita faujasita para adsorción de iones en aguas residuales municipales.” Tecnología y ciencias del agua, vol. 09, no. 4, pp. 184–208, Sep. 2018.

A. F. Pulungan and S. Wahyuni. “Analisis kandungan logam kadmium (Cd) dalam air minum isi ulang (AMIU) di Kota Lhokseumawe, Aceh,” AVERROUS: Jurnal Kedokteran dan Kesehatan Malikussaleh, vol. 7, no. 1, p. 75, May 2021.

L. Friberg. Cadmium in the Environment. CRC Press, 2018.

H. R. Schaefer, B. M. Flannery, L. Crosby, O. E. Jones-Dominic, C. Punzalan, and K. Middleton. “A systematic review of adverse health effects associated with oral cadmium exposure.” Regulatory Toxicology and Pharmacology, vol. 134, p. 105243, 2022.

T. C. Nguyen, P. Loganathan, T. V. Nguyen, S. Vigneswaran, J. Kandasamy, and R. Naidu. “Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies.” Chemical Engineering Journal, vol. 270, pp. 393–404, Jun. 2015.

Ž. Z. Tasić, G. D. Bogdanović, and M. M. Antonijević. “Application of natural zeolite in wastewater treatment: A review.” Journal of Mining and Metallurgy A: Mining, vol. 55, no. 1, pp. 67–79, 2019.

Z. Peng, X. Lin, Y. Zhang, Z. Hu, X. Yang, C. Chen, H. Chen, Y. Li, and J. Wang. “Removal of cadmium from wastewater by magnetic zeolite synthesized from natural, low-grade molybdenum.” Science of The Total Environment, vol. 772, p. 145355, Jun. 2021.

V. O. Vasylechko, G. V. Gryshchouk, Y. B. Kuz’ma, V. P. Zakordonskiy, L. O. Vasylechko, L. O. Lebedynets, and M. B. Kalytovs’ka. “Adsorption of cadmium on acid-modified Transcarpathian clinoptilolite.” Microporous and Mesoporous Materials, vol. 60, no. 1–3, pp. 183–196, Jun. 2003.

X. Zhang, Y. Xue, J. Gao, C. He, Y. Ji, and Y. Dou. “Comparison of adsorption mechanisms for cadmium removal by modified zeolites and sands coated with Zn-layered double hydroxides.” Chemical Engineering Journal, vol. 380, p. 122578, Jan. 2020.

S. Suherman, Muh. S. Hakim, and A. Kuncaka. “Optical chemical sensor based on 2,2-Furildioxime in sol-gel matrix for determination of Ni2+ in water.” Processes, vol. 9, no. 2, p. 280, Feb. 2021.

P. Sharma, S. P. Singh, S. K. Parakh, and Y. W. Tong. “Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction.” Bioengineered, vol. 13, no. 3, pp. 4923–4938, Mar. 2022.

S. M. Shaheen, A. S. Derbalah, and F. S. Moghanm. “Removal of heavy metals from aqueous solution by zeolite in competitive sorption system.” International Journal of Environmental Science and Development, pp. 362–367, 2012.

H. Pahlavanzadeh and M. Motamedi. “Adsorption of nickel, Ni(II), in aqueous solution by modified zeolite as a cation-exchange adsorbent.” J. Chem. Eng. Data, vol. 65, no. 1, pp. 185–197, Jan. 2020.

B. Mehdi, H. Belkacemi, D. Brahmi-Ingrachen, L. A. Braham, and L. Muhr. “Study of nickel adsorption on NaCl-modified natural zeolite using response surface methodology and kinetics modeling.” Groundw. Sustain. Dev., vol. 17, p. 100757, May 2022.

I. Rodríguez-Iznaga, G. Rodríguez-Fuentes, and V. Petranovskii. “Ammonium modified natural clinoptilolite to remove manganese, cobalt and nickel ions from wastewater: Favorable conditions to the modification and selectivity to the cations.” Microporous and Mesoporous Materials, vol. 255, pp. 200–210, Jan. 2018.

D. N. Rohmah, N. H. Aprilita, and M. Mudasir, “Modification of coal fly ash with dithizone for adsorption of Ni(II) metal ion.” Key Eng. Mater., vol. 927, pp. 20–27, 2022.

S. R. Taffarel and J. Rubio. “On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites.” Miner Eng., vol. 22, no. 4, pp. 336–343, Mar. 2009.

R. Putra, K. Khamidinal, D. Krisdiyanto, and I. Nugraha. “Adsorpsi ion Mn(II) pada zeolit dari abu dasar batubara termodifikasi ditizon.” Jurnal Kimia Terapan Indonesia, vol. 17, no. 2, pp. 87–99, Dec. 2015.

C. Belviso, F. Cavalcante, S. Di Gennaro, A. Lettino, A. Palma, P. Ragone, S. Fiore. “Removal of Mn from aqueous solution using fly ash and its hydrothermal synthetic zeolite.” J. Environ. Manage., vol. 137, pp. 16–22, May 2014.

Downloads

Published

04-05-2024

How to Cite

Hakim, M. S., Iqbal, R. M., ’Adany, F., Putra, R., Nitriany, I., Telaumbanua, I. S., … Dewi, R. K. (2024). A Review on Development of Porous Aluminosilicate-Based Zeolite Adsorbent for Heavy Metal Pollution Treatment . Jurnal Sains Materi Indonesia, 25(2), 85–99. https://doi.org/10.55981/jsmi.2024.1076