Synthesis and Characterization of LaF3:Ce Scintillator Material
DOI:
https://doi.org/10.55981/jsmi.2023.185Keywords:
Scintillator materials, LaF3:Ce, Co-precipitationAbstract
Synthesis and Characterization of LaF3:Ce Scintillator Material.Synthesis and characterization of the LaF3:Ce scintillator have been carried out. Synthesis was carried out using the co-precipitation method. In this study, the raw materials used were NaF, LaCl3•7H2O, and Ce(NO3)3•6H2O with ethanol and distilled water as a solvent; while surfactants were used oleic acid. In this study, the compound LaF3:0.2Ce was synthesized. The sample was characterized by using an X-Ray Diffractometer (XRD), a Scanning Electron Microscope (SEM), and a Spectrofluorometer. The analyzed data showed that the 82.6 weight fraction of LaF3:0.2Ce phase has precipitated accompanied by the formation of NaCl and C2Ce phases of 5.1 and 12.3 weight fraction, respectively. The NaCl phase is a by-product of the chemical reaction: xLaCl3•7H2O + zCeCl3•7H2O + 3NaF → LaxCezF3 + 3NaCl + 7H2O which could be removed from the precipitate solution by an appropriate separation method, while the C2Ce one appeared as a result of heating the sample at 400ºC. The LaF3:Ce scintillator sample shows the phenomenon of a bluish glow with a lifetime, t = 6 × 10-10 seconds even in the presence of a foreign phase. The existence of NaCl and C2Ce as a local environment still makes LaF3:0.2Ce has normal lifetime characteristics.
Downloads
References
. B. J. Park, J. J. Choi, J. S. Choe, O. Gileva, C. Ha, A. Iltis, E. J. Jeon, D. Y. Kim, K.W. Kim, S. K. Kim, Y. D.Kim, Y. J. Ko, C. H. Lee, H. S. Lee, I. S. Lee, M. H. Lee, S. H. Lee, S. J. Ra, J. K. Son, and K. A. Shin. “Development of ultra-pure NaI(Tl) detectors for the COSINE-200 experiment.” Eur. Phys. J.C., vol. 80, no. 814, 2020.
. I. Singh, B. Singh, B. S. Sandhu, and A. D. Sabharwal. “Comparative study for intermediate crystal size of NaI(Tl)scintillation detector.” Rev. Sci. Instrum., vol. 91, p. 073105, 2020.
. X. Wu, P. Li, X. Wei, and J. Liu. “Review: All-inorganic perovskite single crystals for optoelectronic detection.”Crystals, vol. 12, no. 6, p. 792, 2022.
. R. Kubrin. “Nanophosphor coatings: Technology and applications, opportunities and challenge.” Powder andParticle Journal, no. 31, pp. 22–52, 2014.
. B.D. Milbrath, A.J. Peurrung, M. Bliss, and W.J. Weber. “Radiation detector materials: An overview.” J. Mater.Res., vol. 23, no. 10, pp. 2561–2581, 2008.
. A. Dorokhina, R. Ishihara, H. Kominami, V. Bakhmetyev, M. Sychov, T. Aoki, and H. Morii. “Solvothermalsynthesis of LaF3:Ce nanoparticles for use in medicine: Luminescence, morphology and surface properties.” Ceramics, vol. 6, no. 1, pp. 492–503, 2023.
. Y. Wang, Y. Wang, C. Huang, T. Chen, and J. Wu. “Ultra-weak chemiluminescence enhanced by cerium-dopedLaF3 nanoparticles: A potential nitrite analysis method.”Front. Chem., vol. 8, no. 639, 2020.
. A. T. Singh, M. M. Khandpekar, and S. G. Gaurkhede. “Enhanced luminescence of L-Alanine capped LaF3:Cenanoparticles useful in biological labeling.” Journal of Nano Research, vol. 32, pp. 81–92, 2015.
. L. Zhang, W. Li, X. Hu, Y. Peng, J. Hu, X. Kuang, L. Song, and Z. Chen. “Facile one-pot sonochemical synthesisof hydrophilic ultrasmall LaF3:Ce,Tb nanoparticles with green luminescence.” Progress in Natural Science: Materials International, vol. 22, no. 5, pp. 488–492, 2012.
. S. G. Gaurkhede. “Synthesis and Studies Room Temperature Conductivity, Dielectric Analysis of LaF3 Nanocrystals.” Nanosystems: Physics, Chemistry, Mathematics, vol. 5, no. 6, pp. 843–848, 2014.
. A. T. Singha and M. M. Khandpekar. “Synthesis and structural studies of LaF3:Ce nanoparticles modified by tyrosine for bioimaging and biotagging applications.” Materials Today: Proceedings, vol. 3, no. 10, pp. 4260–4265, 2016.
. F. Yang. “Synthesis, Characterization and Fluorescence Performance of LaF3:Ce3+ Nanocrystals.” Thesis, The University of New Mexico, New Mexico, 2009.
. T. Rogers, C. Han, B. Wagner, J. Nadler, and Z. Kang. “Synthesis of luminescent nanoparticle embedded polymer nanocomposites for scintillation applications.” Mater. Res. Soc. Symp. Proc., vol. 1312, 2011.
. A. Jain, C. Blum, and V. Subramaniam. “Fluorescence lifetime spectroscopy and imaging of visible fluorescent proteins.” in Chapter 4: Advances in Biomedical Engineering, Elsevier B.V., 2009, pp. 147–176.
. D. Chateigner, X. Chen, M. Ciriotti, R. T. Downs, S. Gražulis, W. Kaminsky, A. L. Bail, L. Lutterotti, Y. Matsushita, A. Merkys, P. Moeck, P. M. Rust, M. Q. Olozábal, H. Rajan, A. Vaitkus, and A. F.T. Yokochi. CIF File No.1538557, Crystallography Open Database. Available: http://www.crystallography.net/cod/
. K. Schlyter. “On the crystal structure of fluorides of the tysonite LaF3 type.” Arkiv for Kemi, vol. 5, pp.73–82, 1952.
. D. Chateigner, X. Chen, M. Ciriotti, R. T. Downs, S. Gražulis, W. Kaminsky, A. L. Bail, L. Lutterotti, Y. Matsushita, A. Merkys, P. Moeck, P. M. Rust, M. Q. Olozábal, H. Rajan, A. Vaitkus, and A. F.T. Yokochi CIF File No.1000041, Crystallography Open Database. Available: http://www.crystallography.net/cod/
. D. Chateigner, X. Chen, M. Ciriotti, R. T. Downs, S. Gražulis, W. Kaminsky, A. L. Bail, L. Lutterotti, Y. Matsushita, A. Merkys, P. Moeck, P. M. Rust, M. Q. Olozábal, H. Rajan, A. Vaitkus, and A. F.T. Yokochi. CIF File No.1528322, Crystallography Open Database, Available: http://www.crystallography.net/cod/
. S. Ryufuku, Y. Tomota, Y. Shiota, T. Shiratori, H. Suzuki, and A. Moriai. “Neutron diffraction profile analysis to determine dislocation density and grain size for drawn steel wires.” Materials Science Forum, vol. 539–543, pp. 2281–2286, 2007.
. K. N. Shinde, S.J. Dhoble, H.C. Swart, and K. Park. “Chapter 2: Basic mechanisms of photoluminescence” in Phosphate Phosphors for Solid-State Lighting, Springer Series in Materials Science 174, pp. 41–59, 2012.
. J. R. Albani, Principles and Applications of Fluorescence Spectroscopy, Blackwell Publishing, pp. 96, 2007.
. V. Retivov, V. Dubov, I. Komendo, P. Karpyuk, D. Kuznetsova, P. Sokolov, Y. Talochka, and M. Korzhik. “Compositionally disordered crystalline compounds for next generation of radiation detectors.” Nanomaterials, vol. 12, no. 23, pp. 4295, 2022.
. N. Shrivastava, L. U. Khan, J. M. Vargas, C. Ospina, J. A. Q. Coaquira, G. Zoppellaro, H. F. Brito, Y. Javed, D. K.Shukla, M. C. F. C. Felinto, and S. K. Sharma. “Efficient multicolor tunability of ultrasmall ternary doped LaF3nanoparticles: energy conversion and magnetic behavior.” Phys. Chem. Chem. Phys., vol. 19, no. 28, pp. 18660–18670, 2017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Engkir Sukirman, Yustinus Purwamargapratala, Bambang Sugeng, Mrs. Wahyu, Mr. Indra, Mr. Ahda, Mr. Agus, Dr. Arbi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.