Preparation of Polyurethane-Modified Epoxy Coating Materials Based on Vegetable Oil Derivated Ester

Authors

  • Muhammad Ghozali Research Center for Chemistry BRIN
  • Witta Kartika Restu Research Center for Chemistry - BRIN
  • Evi Triwulandari Research Center for Chemistry BRIN
  • Lutfi Rizky Fauzi Department of Chemistry - UIN Syarif Hidayatullah

DOI:

https://doi.org/10.55981/jsmi.2023.271

Keywords:

Polyurethane, Polymer coatings, Epoxy, Vegetable oil

Abstract

This study utilize vegetable oil derivatives as a polyol in polyurethane. A modification of epoxy using polyurethane was done using ester derivative of vegetable oils as polyols, which was polyethylene glycol monooleate (PEGMO). The PEGMO was synthesized via an esterification reaction. The synthesis of polyurethane-modified epoxy using polyethylene glycol monooleate ester (PME-PEGMO) was conducted by reacting epoxy, tolonate and PEGMO. Analysis results of FTIR and H-NMR showed a new absorption peak derived from the urethane bond. The mechanical and thermal properties were characterized by a universal testing machine (UTM) and thermogravimetry analysis (TGA), respectively. According to the analysis results, it is shown that the addition of polyethylene glycol monooleate ester-based polyurethane on epoxy improved the mechanical properties of the epoxy, from 69.61 kgf/cm2 to139.80 kgf/cm2. However, it decreased the thermal stability of the epoxy. At 500°C, the mass of epoxy was remaining 28%, while the PME-PEGMO was only 13%.

 

Downloads

Download data is not yet available.

References

F. -L. Jin and S. -J. Park. "Thermomechanical behavior of epoxy resins modified with epoxidized vegetable oils." Polym. Int., vol. 57, no. 4, pp. 577-583, 2008.

https://doi.org/10.1002/pi.2280

J. O. Akindoyo, M. D. H. Beg, S. Ghazali, M. R. Islam, N. Jeyaratnam, and A. R. Yuvaraj. "Polyurethane types, synthesis and applications - a review." RSC Adv., vol. 6, no. 115, pp. 114453-114482, 2016.

https://doi.org/10.1039/C6RA14525F

D. Rosu, L. Rosu, F. Mustata, and C.-D. Varganici. "Effect of UV radiation on some semi-interpenetrating polymer networks based on polyurethane and epoxy resin." Polym. Degrad. Stab., vol. 97, no. 8, pp. 1261-1269, 2012.

https://doi.org/10.1016/j.polymdegradstab.2012.05.035

P. Gupta and M. Bajpai. "Development of siliconized epoxy resins and their application as anticorrosive coatings." Adv. Chem. Eng. Sci., vol. 01, pp.133-139, 2011.

https://doi.org/10.4236/aces.2011.13020

E. Bakhshandeh, A. Jannesari, Z. Ranjbar, S. Sobhani, and M. R. Saeb. "Anti-corrosion hybrid coatings based on epoxy - silica nano-composites : Toward relationship between the morphology and EIS data." Prog. Org. Coatings., vol. 77, no. 7, pp. 1169-1183, 2014.

https://doi.org/10.1016/j.porgcoat.2014.04.005

N.R. Paluvai, S. Mohanty, and S. K. Nayak. "Synthesis and modifications of epoxy resins and their composites : a review." Polym. Plast. Technol. Eng., vol. 53, no. 16, pp. 1723-1758, 2014.

https://doi.org/10.1080/03602559.2014.919658

B. Liu and Y. Wang. "A novel design for water-based modified epoxy coating with anti-corrosive application properties." Prog. Org. Coatings., vol. 77, no. 1, pp. 219-224, 2014.

https://doi.org/10.1016/j.porgcoat.2013.09.007

C. E. Corcione, F. Freuli, and M. Frigione. "Cold-curing structural epoxy resins: Analysis of the curing reaction as a function of curing time and thickness." Materials, vol. 7, no. 9, pp. 6832-6842, 2014.

https://doi.org/10.3390/ma7096832

J. J. Chruściel and E. Leśniak. "Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates." Prog. Polym. Sci., vol. 41, pp. 67-121, 2015.

https://doi.org/10.1016/j.progpolymsci.2014.08.001

M. Morell, M. Erber, X. Ramis, F. Ferrando, B. Voit, and A. Serra. "New epoxy thermosets modified with hyperbranched poly(ester-amide) of different molecular weight." Eur. Polym. J., vol. 46, no. 7, pp. 1498-1509, 2010.

https://doi.org/10.1016/j.eurpolymj.2010.04.015

M. Kostrzewa, B. Hausnerova, M. Bakar, and M. Dalka. "Property Evaluation and Structure Analysis of Polyurethane/Epoxy Graft Interpenetrating Polymer Networks." J. Appl. Polym. Sci. vol. 122, no. 3, pp. 1722-1730, 2011.

https://doi.org/10.1002/app.34070

H. Yeganeh, M. M. Lakouraj, and S. Jamshidi. "Synthesis and characterization of novel biodegradable epoxy-modified polyurethane elastomers." J. Polym. Sci. Part A Polym. Chem., vol. 43, no. 14, pp. 2985-2996, 2005.

https://doi.org/10.1002/pola.20789

M. Bakar, M. Kostrzewa, and Z. Pawelec. "Preparation and properties of epoxy resin modified with polyurethane based on hexamethylene diisocyanate and different polyols." J. Thermoplast. Compos. Mater., vol. 27, no. 5, pp. 620-631, 2014.

https://doi.org/10.1177/0892705712453155

M. Bakar, M. Kostrzewa, B. Hausnerova, and K. Sar. "Preparation and property evaluation of nanocomposites based on polyurethane-modified epoxy/montmorillonite system." Adv. Polym. Technol., vol. 29, no. 4, pp. 237-248, 2010.

https://doi.org/10.1002/adv.20192

M. Kostrzewa, B. Hausnerova, M. Bakar, and E. Siwek. "Effects of various polyurethanes on the mechanical and structural properties of an epoxy resin." J. Appl. Polym. Sci., vol. 119, no. 5, pp. 2925-2932, 2010.

https://doi.org/10.1002/app.32974

S. S. Panda, B. P. Panda, S. K. Nayak, and S. Mohanty. "A review on waterborne thermosetting polyurethane coatings based on castor Oil : Synthesis, characterization and application." Polym. Plast. Technol. Eng., vol. 57, no. 6, pp. 500-522, 2018.

https://doi.org/10.1080/03602559.2016.1275681

A. Prociak, L. Szczepkowski, J. Ryszkowska, M. Kurańska, M. Auguścik, E. Malewska, M. Gloc, and S. Michałowski. "Influence of chemical structure of petrochemical polyol on properties of bio ‑ polyurethane foams." J. Polym. Environ., vol. 27, pp. 2360-2368, 2019.

https://doi.org/10.1007/s10924-019-01527-7

N. V Gama, A. Ferreira, and A. Barros-timmons. "Polyurethane Foams: Past, Present, and Future." Materials, vol. 11, no. 10, p. 1841, 2018.

https://doi.org/10.3390/ma11101841

J. Datta and P. Kasprzyk. "Thermoplastic polyurethanes derived from petrochemical or renewable resources : A comprehensive review." Polym. Eng. Sci., vol. 58, no. S1, p. E14-E35, 2018.

https://doi.org/10.1002/pen.24633

P. Alagi and S.C. Hong. "Vegetable oil-based polyols for sustainable polyurethanes." Macromol. Res., vol. 23, pp. 1079-1086, 2015.

https://doi.org/10.1007/s13233-015-3154-6

M. Ionescu, D. Radojčić, X. Wan, M. L. Shrestha, Z. S. Petrović, and T. A. Upshaw. "Highly functional polyols from castor oil for rigid polyurethanes." Eur. Polym. J., vol. 84, pp. 736-749, 2016.

https://doi.org/10.1016/j.eurpolymj.2016.06.006

X. Kong, G. Liu, H. Qi, and J. M. Curtis. "Preparation and characterization of high-solid polyurethane coating systems based on vegetable oil derived polyols." Prog. Org. Coatings., vol. 76, no. 9, pp. 1151-1160, 2013.

https://doi.org/10.1016/j.porgcoat.2013.03.019

M. Alam, D. Akram, E. Sharmin, F. Zafar, and S. Ahmad. "Vegetable oil based eco-friendly coating materials: A review article." Arab. J. Chem., vol. 7, no. 4, pp. 469-479, 2014.

https://doi.org/10.1016/j.arabjc.2013.12.023

P.G. Parzuchowski, M. Jurczyk-Kowalska, J. Ryszkowska, and G. Rokicki. "Epoxy resin modified with soybean oil containing cyclic carbonate groups." J. Appl. Polym. Sci., vol. 102, no. 3, pp. 2904-2914, 2006.

https://doi.org/10.1002/app.24795

A. Badan and T.M. Majka. "The influence of vegetable-oil based polyols on physico-mechanical and thermal properties of polyurethane foams." Proceeding MDPI., vol. 1, pp. 1-7, 2017.

https://doi.org/10.3390/ecsoc-21-04763

R. Mustapha, A. R. Rahmat, R. Abdul Majid, and S. N. H. Mustapha. "Vegetable oil-based epoxy resins and their composites with bio-based hardener: a short review." Polym. Technol. Mater., vol. 58, no. 12, pp. 1311-1326, 2019.

https://doi.org/10.1080/25740881.2018.1563119

P. Alagi, Y. J. Choi, and S. C. Hong. "Preparation of vegetable oil-based polyols with controlled hydroxyl functionalities for thermoplastic polyurethane." Eur. Polym. J., vol. 78, pp. 46-60, 2016.

https://doi.org/10.1016/j.eurpolymj.2016.03.003

M. Ghozali, E. Triwulandari, and A. Haryono. "Preparation and characterization of polyurethane-modified Epoxy with various types of polyol." Macromol. Symp., vol. 353, no. 1, pp. 154-160, 2015.

https://doi.org/10.1002/masy.201550321

A. Mancini, E. Imperlini, E. Nigro, C. Montagnese, A. Daniele, S. Orrù, and P. Buono. Biological and nutritional properties of palm oil and palmitic acid: Effects on health, Molecules, vol. 20, no. 9, pp. 17339-17361, 2015.

https://doi.org/10.3390/molecules200917339

K. H. Hsieh, J. L. Han, C. T. Yu, and S. C. Fu. "Graft interpenetrating polymer networks of urethane-modified bismaleimide and epoxy (I): mechanical behavior and morphology." Polymer (Guildf)., vol. 42, no. 6, pp. 2491-2500, 2001.

https://doi.org/10.1016/S0032-3861(00)00641-8

E. Triwulandari, M. Ghozali, and W. K. Restu. "Influence of different structures of palm oil-based polyol on the mechanical and thermal properties of hybrid resin from polyurethane-/polysiloxane-modified epoxy." Polym. Bull., vol. 78, pp. 2121-2138, 2020.

https://doi.org/10.1007/s00289-020-03203-6

K. P. O. Mahesh, M. Alagar, and S. Ananda Kumar. "Mechanical, thermal and morphological behavior of bismaleimide modified polyurethane-epoxy IPN matrices." Polym. Adv. Technol., vol. 14, no. 2, pp. 137-146, 2003.

https://doi.org/10.1002/pat.341

A.A. Prabu and M. Alagar. "Mechanical and thermal studies of intercross-linked networks based on siliconized polyurethane-epoxy/unsaturated polyester coatings." Prog. Org. Coatings., vol. 49, no. 3, pp. 236-243, 2004.

https://doi.org/10.1016/j.porgcoat.2003.09.018

J. Blackwell and K. H. Gardner. "Structure of the hard segments in polyurethane elastomers." Polymer, vol. 20, no. 1, pp. 13-17, 1979.

https://doi.org/10.1016/0032-3861(79)90035-1

Downloads

Published

31-10-2023

How to Cite

Ghozali, M., Restu, W. K., Triwulandari, E., & Fauzi, L. R. (2023). Preparation of Polyurethane-Modified Epoxy Coating Materials Based on Vegetable Oil Derivated Ester. Jurnal Sains Materi Indonesia, 25(1), 21–28. https://doi.org/10.55981/jsmi.2023.271