Influence of Applied Potential on The Structural and Optical Properties of Cu2O Thin Films Grown by Electrochemical Deposition

Authors

  • A Maddu IPB University
  • V Lestari IPB University
  • M N Indro IPB University

Keywords:

Bandgap energy, Cu2O thin films, Electrodeposition, Potential, Structure

Abstract

Cu2O thin films have been deposited on indium-tin-oxide (ITO) coated glass substrate by electrochemical method or electrodeposition. The effect of deposition potential on the microstructure and optical properties of Cu2O thin films was studied. Electrodeposition for two Cu2O thin films was carried out at –0.5V and –0.6V relative to the standard calomel electrode (SCE) as a reference electrode. Cu2O thin films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and UV-Visible spectroscopy. The diffraction pattern indicated the cubic structure of the Cu2O crystal has been well grown. The lattice parameters of Cu2O films slightly increased as the potential of electrodeposition increased. The crystallite size of Cu2O films significantly increased as the applied potential increased. Cu2O thin films showed a smooth and flat surface morphology based on SEM images. The optical transmittance of the Cu2O thin films drastically decreased as the applied potential increased due to the film thickness increasing. The bandgap energy of Cu2O films based on the Tauc plot increased as the applied potential increased, that is 2.0 eV for the film deposited at -0.5V and 2.13 eV deposited at -0.6V.

Downloads

Download data is not yet available.

References

. X. Jiang, M. Zhang, S. Shi, G. He, X. Song, and Z. Sun. “Microstructure and optical properties of nanocrystalline

Cu2O thin films prepared by electrodeposition,” Nanoscale Research Letter, vol. 9, pp. 219, 2014.

. C. H. Voon, B. Y. Lim, S. C. B. Gopinath, Y. Al-Douri, K. L. Foo, M. K. Md Arshad, S. T. Ten, A. R. Ruslinda,

U. Hashim, and V. C. S. Tony. “Fabrication of Cu2O nanostructured thin film by anodizing,” Materials SciencePoland, vol. 36, no. 2, pp. 209-216, 2018.

. Y-K. Hsu, J-R. Wu, M-H Chen, Y-C. Chen, Y-G. Lin. “Fabrication of homojunction Cu2O solar cells by

electrochemical deposition,” Applied Surface Science, vol. 354, Part A, pp. 8-13, 2015.

. R. P. Wijesundera, L. K. A. D. D. S. Gunawardhana, and W. Siripala. “Electrodeposited Cu2O homojunction solar

cells: Fabrication of a cell of high short circuit photocurrent,” Solar Energy Materials and Solar Cells, vol. 157, pp.

-886, 2016.

. C. Jayathilaka, L. S. R. Kumara, K. Ohara, C. Song, S. Kohara, O. Sakata, W. Siripala, and S. Jayanetti.

“Enhancement of Solar Cell Performance of Electrodeposited Ti/n-Cu2O/p-Cu2O/Au Homojunction Solar Cells

by Interface and Surface Modification,” Crystals, vol. 10, pp. 609, 2020.

. M. Hadiyan, A. Salehi, and H. Mirzanejad. “Gas sensing behavior of Cu2O and CuO/Cu2O composite nanowires

synthesized by template-assisted electrodeposition,” Journal of Korean Ceramic Society, vol. 58, pp. 94–105,

. K. N. D. Bandara, K. M. D. C. Jayathilaka, D. P. Dissanayake, and J. K. D. S. Jayanetti, “Surface engineering of

electrodeposited cuprous oxide (Cu2O) thin films: Effect on hydrophobicity and LP gas sensing,” Applied Surface

Science, vol. 561, p. 150020, 2021.

. B. Wang, Y. Xie, T. Yang, L. Wang, L. Wang, and D. Jin, “Synthesis and photocatalytic properties of flexible

Cu2O thin film,” Surface Engineering, vol.36, no. 32, pp. 199-205, 2020.

. P. K. Pagare and A. P. Torane. “Band gap varied cuprous oxide (Cu2O) thin films as a tool for glucose sensing,”

Microchimica Acta, vol. 183, pp. 2983–2989, 2016.

. I. V. Bagal, N. R. Chodankar, M. A. Hassan, M. A. Johar, D-H. Kim, and S-W. Ryu. “Cu2O as an emerging

photocathode for solar water splitting - A status review,” International Journal of Hydrogen Energy, vol. 44, no.

, pp. 21351-21378, 2019.

. P. Pattanasattayavong, S. Thomas, G. Adamopoulos, M. A. McLachlan, T. D. Anthopoulos. “p-channel thin-film

transistors based on spray-coated Cu2O films,” Applied Physics Letters, vol. 102, p. 163505, 2013.

. I. S. Brandt, M. A. Tumelero, S. Pelegrini, G. Zangari, and A. A. Pasa, “Electrodeposition of Cu2O: growth,

properties, and applications,” Journal of Solid-State Electrochemistry, vol. 21, pp. 1999–2020, 2017.

. S. Laidoudi, A. Y. Bioud, A. Azizi, G. Schmerber, J. Bartringer, S. Barre, and A. Dinia “Growth and

characterization of electrodeposited Cu2O thin films,” Semiconductor Science and Technology, vol. 28, pp.

, 2013.

. A. A. Hssi, L. Atourki, N. Labchir, M. Ouaf, K. Abouabassi, A. Elfanaoui, A. Ihlal, S. Benmokhtar, and

K. Bouabid. “High-quality Cu2O thin flms via electrochemical synthesis under a variable applied potentia,”

Journal of Materials Science: Materials in Electronics, vol. 31, pp. 4237–4244, 2020.

. S. Dolai, S. Das, S. Hussain, R. Bhar, and A. K. Pal. “Cuprous oxide (Cu2O) thin films prepared by reactive d.c.

sputtering technique,” Vacuum, vol. 141, pp. 296-306, 2017.

. S. Han and A. J. Flewitt. “Control of grain orientation and its impact on carrier mobility in reactively sputtered

Cu2O thin films,” Thin Solid Films, vol. 704, p. 138000, 2013.

. M. Umar, M. Y. Swinkels, M. De Luca, C. Fasolato, L. Moser, G. Gadea, L. Marot, T. Glatzel, and I. Zardo,

“Morphological and stoichiometric optimization of Cu2O thin films by deposition conditions and post-growth

annealing,” Thin Solid Films, vol. 732, pp. 138763, 2021.

. S. F. U. Farhad, D. Cherns, J. A. Smith, N. A. Fox, and D. J. Fermín. “Pulsed laser deposition of single phase nand p-type Cu2O thin films with low resistivity,” Materials and Design, vol. 193, p. 108848, 2020.

. F. Baig, Y. H. Khattak, B. M. Soucase, S. Beg, S. Ullah. “Effect of anionic bath temperature on the morphology

and photoelectrochemical properties of Cu2O deposited by SILAR,” Materials Science Semiconductor Processing,

vol. 88, pp. 35–39, 2018.

. D. Chua, S. B. Kim, K. Li, and R. Gordon. “Low-Temperature Chemical Vapor Deposition of Cuprous Oxide

Thin Films Using a Copper(I) Amidinate Precursor,” ACS Applied Energy Materials, vol. 2, no. 11, pp. 7750–

, 2019.

. D. Osorio-Rivera, G. Torres-Delgado, J. Márquez-Marín, R. Castanedo-Pérez, M. A. Aguilar-Frutis, and O.

Zelaya-Ángel. “Cuprous oxide thin films obtained by spray-pyrolysis technique,” Journal of Materials Science:

Materials in Electronics, vol. 29, no. 8, pp. 851–857, 2018.

. D. S. C. Halin, I. A. Talib, A. R. Daud, and M. A. A. Hamid. “Characterizations of Cuprous Oxide Thin Films

Prepared by Sol-Gel Spin Coating Technique with Different Additives for the Photoelectrochemical Solar Cell,”

International Journal of Photoenergy, vol. 2014, Article ID 352156, 6 pages.

. D. Tonagi, M. Hagiwara, and S. Fujihara. “Fabrication of highly (111)-oriented Cu2O films on glass substrates by

repeated chemical bath deposition,” Journal of Crystal Growth, vol. 551, pp. 125920, 2020.

. G. E. Timuda and A. Maddu. “Pengaruh Ketebalan terhadap Sifat Optik Lapisan Semikonduktor Cu2O yang

Dideposisikan dengan Metode Chemical Bath Deposition (CBD),” Jurnal Ilmu Pengetahuan dan Teknologi

TELAAH, vol. 28, pp. 1-5, 2010

. J. Xue, Q. Shen, W. Liang, X. Liu, L. Bian, and B. Xu. “Preparation and formation mechanism of smooth and

uniform Cu2O thin films by electrodeposition method,” Surface Coatings Technology, vol. 216, pp. 166–171, 2013

. D. A. Fentahun, A. Tyagi, S. Singh, P. Sinha, A. Mishra, S. Danayak, R. Kumar, and K. K. Kar, “Tunable optical

and electrical properties of p-type Cu2O thin films,” Journal of Materials Science: Materials in Electronics, vol.

, pp. 11158–11172, 2021.

. T. Mahalingam, J. S. P. Chitra, S. Rajendran, and P. J Sebastian, “Potentiostatic deposition and characterization

of Cu2O thin films,” Semiconductor Science and Technology, vol. 17, pp. 565–569, 2022.

. P. Wang, H. Wu, Y. Tang, R. Amal, and Y. H. Ng. “Electrodeposited Cu2O as Photoelectrodes with Controllable

Conductivity Type for Solar Energy Conversion,” Journal of Physical Chemistry C, vol. 119, pp. 26275−26282,

. A. A. Hssi, L. Atourki, N. Labchir, K. Abouabassi, M. Ouafi, H. Mouhib, A. Ihlal, A. Elfanaoui, S. Benmokhtar,

and K. Bouabid, “Structural and optical properties of electrodeposited Cu2O thin films,” in Materials Today:

Proceedings, 2020, vol. 22, Part 1, pp. 89-92.

. F. Plascencia-Hernandez, A. L. Luna, C. Colbeau-Justin, P. Santiago, M. Garcia-Rocha, G. Valverde-Aguilar,

and M. A. Valenzuela. “Cu2O cubic and polyhedral structures versus commercial powder: Shape effect on

photocatalytic activity under visible light,” Journal of Saudi Chemical Society, vol. 23, no. 8, pp. 1016-1023, 2019.

. A. Monshi, M. R. Foroughi, and M. R. Monshi. “Modified Scherrer Equation to Estimate More Accurately NanoCrystallite Size Using XRD,” World Journal of Nano Science and Engineering, vol. 2, pp. 154-160, 2012.

. H. A. Hussein and K. H. Al-Mayalee. “Study the Effect of Thickness on the Optical Properties of Copper Oxide

Thin Films by FDTD Method,” Turkish Journal of Computer and Mathematics Education, vol.12, no.12, pp. 3865-

, 2021.

. R. K. Gupta, K. Ghosh, and P. K. Kahol. “Effect of temperature on current–voltage characteristics of Cu2O/p-Si

Schottky diode,” Physica E, vol. 41, pp. 876–878, 2009.

. D. S. Murali, S. Kumar, R. J. Choudhary, A. D. Wadikar, M. K. Jain, and A. Subrahmanyam. “Synthesis of Cu2O

from CuO thin films: Optical and electrical properties,” AIP Advances, vol. 5, p. 047143, 2015.

Downloads

Published

16-05-2024

How to Cite

A Maddu, V Lestari, & M N Indro. (2024). Influence of Applied Potential on The Structural and Optical Properties of Cu2O Thin Films Grown by Electrochemical Deposition. Jurnal Sains Materi Indonesia, 24(1), 16–23. Retrieved from https://ejournal.brin.go.id/jsmi/article/view/4924

Issue

Section

Articles