The Effect of Ionic Liquid and Lithium Salt Electrolyte Addition on The Characteristics of Polyvinyl Alcohol/Chitosan-Based Membranes

Authors

  • Rudi Satya Handika
  • Christin Rina Ratri
  • Rohib Rohib
  • Adam Febriyanto Nugraha Universitas Indonesia

DOI:

https://doi.org/10.55981/jsmi.2025.5011

Keywords:

Chitosan, Polyvinyl alcohol, 1-hexyl-3 methylimidazolium iodide ionic liquid, Lithium bis(oxalate) borate electrolyte, Li-ion battery

Abstract

The development of an environmentally friendly polymer electrolyte membrane for lithium-ion batteries is essential. A composite membrane composed of chitosan and polyvinyl alcohol (PVA) is one of the eco-friendly polymer membrane types used for lithium-ion battery electrolyte. This study examined the effect of ionic liquid 1-hexyl-3-methylimidazolium iodide (HMII) and lithium bis(oxalate) borate (LiBOB) electrolyte addition on the characteristics of composite membranes made of chitosan and PVA. The results reveal that the addition of LiBOB and HMII was able to promote the agglomerations and the formation of microcrystals, which increased the mechanical properties and ionic conductivities of the membranes. The membrane sample with LiBOB composition of 25% produced the highest mechanical properties with tensile strength of 21.11 MPa and elastic modulus of 1.93 MPa. The membrane sample with LiBOB composition of 10% without the addition of HMII produced the highest ionic conductivity, namely 5.17 x 10-6 S/cm.

Downloads

References

[1] A. Saal, T. Hagemann, and U.S. Schubert. "Polymers for Battery Applications - Active Materials, Membranes, and Binders." Advanced Energy Materials, vol. 11, no. 43, p. 2001984, 2020.

https://doi.org/10.1002/aenm.202001984

[2] J. Sheng, S. Tong, H. Zhibin, and R. Yang. "Recent Developments of Cellulose Materials for Lithium-ion Battery Separators." Springer Science & Business Media B, Vol. 24, no. 1, pp. 4103-4122, 2017.

https://doi.org/10.1007/s10570-017-1421-8

[3] R. Korthauer (Ed.). Lithium-Ion Batteries: Basics and Applications, Springer Berlin Heidelberg, 2018.

https://doi.org/10.1007/978-3-662-53071-9

[4] A. Manthiram, X. Yu, and S. Wang. "Lithium Battery Chemistries Enabled by Solid-State Electrolytes." Nature Reviews Materials, vol. 2, p. 16103, 2017.

https://doi.org/10.1038/natrevmats.2016.103

[5] X. Wu, K. Pan, M. Jia, Y. Ren, H. He, L. Zhang, and S. Zhang. "Electrolyte for Lithium Protection: from Liquid to Solid." Green Energy and Environment, vol. 4, no. 4, pp. 360-374, 2019.

https://doi.org/10.1016/j.gee.2019.05.003

[6] M. Kotobuki. Polymer Electrolytes. Wiley Online Library, 2019.

https://doi.org/10.1002/9783527805457.ch1

[7] M.H. Rahman, M. Sofiuzzaman, M.I.H. Mondal, A. Rahman, F. Ahmed, M.M. Islam, and M.A. Habib. "Recent Advancement of PVA/Chitosan-Based Composite Biofilm for Food Packaging." Biomedical Journal of Science & Technological Research, vol. 46, no. 1, pp. 36982-36986, 2022.

https://doi.org/10.26717/BJSTR.2022.46.007286

[8] N.A. Rahman, S.A Hanifah, N.N. Mobarak, A. Ahmad, N.A. Ludin, F. Bella, and M.S. Su'ait. "Chitosan as a Paradigm for Biopolymer Electrolytes in Solid-state-dye-sensitised Solar Cells." Polymer, vol. 230, p. 124092, 2021.

https://doi.org/10.1016/j.polymer.2021.124092

[9] R.A.O. Bernal, R.O. Olekhnovich, and M.V. Uspenskaya. "Chitosan/PVA Nanofibers as Potential Material for the Development of Soft Actuators." Polymers, vol. 15, no. 9, 2023.

https://doi.org/10.3390/polym15092037

PMid:37177184 PMCid:PMC10181017

[10] D.F. Zatalini, E. Hendradi, P. Drake, and R. Sari. "The Effect of Chitosan and Polyvinyl Alcohol Combination on Physical Characteristics and Mechanical Properties of Chitosan-PVA-Aloe vera Film." Jurnal Farmasi dan Ilmu Kefarmasian Indonesia, vol. 10, no. 2, pp. 151-161, 2023.

https://doi.org/10.20473/jfiki.v10i22023.151-161

[11] I. Saini, A. Sharma, R. Dhiman, S. Aggarwal, S. Ram, and P.K. Sharma. "Grafted SiC Nanocrystal: For Enhanced Optical, Electrical, and Mechanical Properties of Polyvinyl Alcohol." Journal of Alloy Compound, vol. 714, pp. 172-180, 2017.

https://doi.org/10.1016/j.jallcom.2017.04.183

[12] J.O. Dennis, M.F. Shukur, O.A. Aldaghri, K.H. Ibnaouf, A.A. Adam, F. Usman, Y.M. Hassan, A. Alsadig, W.L. Danbature, and B.A. Abdulkadir. "A Review of Current Trends on Polyvinyl Alcohol (PVA)-Based Solid Polymer Electrolytes." Molecules, vol. 28, no. 4, 2023.

https://doi.org/10.3390/molecules28041781

PMid:36838770 PMCid:PMC9966098

[13] S. Cavus and E. Durgun. "Poly(vinyl alcohol)-Based Polymer Gel Electrolytes: Investigation on Their Conductivity and Characterization." Acta Physica Polonica A,vol. 129, no. 4, pp. 621-624, 2016.

https://doi.org/10.12693/APhysPolA.129.621

[14] E.Y. Wardhono, M.P. Pinem, S. Susilo, B,J, Siom, A. Sudrajad, A. Pramono, Y. Meliana, and E. Guénin. "Modification of Physio-Mechanical Properties of Chitosan-Based Films via Physical Treatment Approach." Polymers, vol. 14, no. 23, p. 5216, 2022.

https://doi.org/10.3390/polym14235216

PMid:36501610 PMCid:PMC9740446

[15] R.K. Cheedarala and J.I. Song. "Moderately Transparent Chitosan-PVA Blended Membrane for Strong Mechanical Stiffness and as a Robust Bio-Material Energy Harvester through Contact-Separation Mode TENG." Front. Nanotechnology, vol. 3, p. 667453, 2021.

https://doi.org/10.3389/fnano.2021.667453

[16] D. Permana, E. Ilimu, N.M. Faariu, A. Setyawati, L.O. Kadidae, and L.O.A.N Ramadhan. "Synthesis and Characterization of Chitosan-Polyvinyl Alcohol-Fe2O3 Composite Membrane for DMFC Application." Makara Journal of Science, vol. 24, no. 1, pp. 1-9, 2020.

https://doi.org/10.7454/mss.v24i1.11723

[17] A. Benouar and M.R.A. Bacha. "Ionic Conductivity of Chitosan-Lithium Electrolyte in Biodegradable Battery Cell." Indonesian Journal of Chemistry, vol. 20, no. 3, pp. 655-660, 2020.

https://doi.org/10.22146/ijc.45283

[18] E.M. Wigayati, T. Lestariningsih, C.R. Ratri, I. Purawiardi, and B. Prihandoko. "Synthesis of LiBOB Fine Powder to Increase Solubility." Makara Journal of Technology, vol. 21, no. 1, pp. 26-32, 2017.

https://doi.org/10.7454/mst.v21i1.3076

[19] N.M. Khan, N.F. Mazuki, and A.S. Samsudin. "Contribution of Li+ Ions to a Gel Polymer Electrolyte Based on Polymethyl Methacrylate and Polylactic Acid Doped with Lithium Bis(oxalato) Borate." Journal of Electronic Materials, vol. 51, pp. 745-760, 2022.

https://doi.org/10.1007/s11664-021-09372-y

[20] Y. Yuan, X. Peng, B. Wang, K. Xue, Z. Li, Y. Ma, B. Zheng, Y. Song, and H. Lu. "Solvate ionic liquid-derived solid polymer electrolyte with lithium bis(oxalato) borate as a functional additive for solid-state lithium metal batteries." Journal of Materials Chemistry A, vol. 11, no. 3, pp. 1301-1311, 2023.

https://doi.org/10.1039/D2TA07393E

[21] M. Gamba, A.A.M. Lapis, and J. Dupont. "Supported Ionic Liquid Enzymatic Catalysis for the Production of Biodiesel." Advanced Synthesis and Catalysis, vol. 350, no. 1, pp. 160-164, 2008.

https://doi.org/10.1002/adsc.200700303

[22] E. Ghasemian, M. Najafi, A.A. Rafati, and Z. Felegari. "Effect of Electrolytes on Surface Tension and Surface Adsorption of 1-hexyl-3-methylimidazolium chloride Ionic Liquid in Aqueous Solution." Journal of Chemistry and Thermodynamics, vol. 42, no. 8, pp. 962-966, 2010.

https://doi.org/10.1016/j.jct.2010.03.007

[23] M.H. Khanmirzaei. S.Ramesh, and K.Ramesh. "Effect of 1-Hexyl-3-Methylimidazolium Iodide Ionic Liquid on Ionic Conductivity and Energy Conversion Efficiency of Solid Polymer Electrolyte-Based Nano-Crystalline Dye-Sensitized Solar Cells." Journal of Nanoscience and Nanotechnology, vol. 20, no. 4, pp. 2423-2429, 2020.

https://doi.org/10.1166/jnn.2020.17192

PMid:31492257

[24] J.W. Chew, M.H. Khanmirzaei, A. Numan, F.S. Omar, K. Ramesh, and S. Ramesh. "Performance studies of ZnO and multi walled carbon nanotubes-based counter electrodes with gel polymer electrolyte for dye-sensitized solar cell." Materials Science in Semiconductor Processing, vol. 83, pp. 144-149, 2018.

https://doi.org/10.1016/j.mssp.2018.04.036

[25] D. Qin, Y. Zhang, S. Huang, Y. Luo, D. Li, and Q. Meng. "Ionic liquid/polymer composite electrolytes by in situ photopolymerization and their application in dye-sensitized solar cells." Electrochimica Acta, vol. 56, no. 24, pp. 8680-8687, 2011.

https://doi.org/10.1016/j.electacta.2011.07.065

[26] J.S. Heslop-Harisson. "Energy Dispersive X-Ray Analysis," in Physical Methods in Plant Sciences, H.-F. Linskens and J.F. Jackson, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990, pp. 144-277.

https://doi.org/10.1007/978-3-642-83611-4_9

[27] R.M. Silverstein, F.X. Webster, and D. Kiemle. Spectrometric Identification of Organic Compounds Handbook, 7th ed., Wiley Interscience, 2005.

[28] S.T.C.L. Ndruru, E. Pramono, D. Wahyuningrum, B. Bundjali, and I.M. Arcana. "Preparation and characterization of biopolymer blend electrolyte membranes based on derived celluloses for lithium-ion batteries separator." Bulletin of Materials Science, vol. 44, no. 104, 2021.

https://doi.org/10.1007/s12034-021-02369-7

[29] S.B. Aziz, M.H. Hamsan, M.M. Nofal, W.O. Karim, I. Brevik, M.A. Brza, R.T. Abdulwahid, S. Al-Zangana, and M.F.Z. Kadir. "Structural, Impedance and Electrochemical Characteristics of Electrical Double Layer Capacitor Devices Based on Chitosan: Dextran Biopolymer Blend Electrolytes." Polymers-MDPI, vol. 12, no. 6, 2020.

https://doi.org/10.3390/polym12061411

PMid:32599794 PMCid:PMC7362077

[30] V.A. Skryshevsky, Y.S. Milovanov, I.V. Gavrilchenko, S.I. Tiagulskyi, A.V. Rusavsky, V.S. Lysenkoet, and A.N.Nazarov. "Impedance spectroscopy of single graphene layer at gas adsorption." Physica Status Solidi (A), vol. 212, no. 9, p. 1941-1945, 2015.

https://doi.org/10.1002/pssa.201532101

[31] E.L. Anderson and P. Bühlmann. "Electrochemical impedance spectroscopy of ion-selective membranes: artifacts in two-, three-, and four-electrode measurements." Analytical Chemistry, vol. 88, no. 19, pp. 9738-9745, 2016.

https://doi.org/10.1021/acs.analchem.6b02641

PMid:27609147

[32] B.B. Zhang, G. H. Wu, C.B. Chen, and S. Gao. "Solid propellant aging detection method based on impedance spectroscopy." Advanced Materials Research, vol. 1179, p. 133-144, 2024.

https://doi.org/10.4028/p-hnKN3r

[33] X. Wang, H. Zhao, A. Wang, Z. Dong, Y. Fan, and Z. Zhai. "A portable impedance spectroscopy measurement method through adaptive reference resistance." IEEE Access, vol. 9, pp. 88011-88018, 2021.

https://doi.org/10.1109/ACCESS.2021.3077308

[34] S. Gupta, P. Singh, and B. Bhattacharya. "Change in charge carrier dynamics by incorporating ionic liquid into poly ethylene oxide-based sodium acetate polymer electrolytes." High Performance Polymers, vol. 34, no. 6, p. 683- 690, 2022.

https://doi.org/10.1177/09540083221088737

[35] S.K. Chaurasia, A.L Saroj, Shalu, V.K. Singh, A.K. Tripathi, A.K Gupta, Y.L. Verma, and R.K. Singh. "Studies on structural, thermal and AC conductivity scaling of PEO-LIPF6 polymer electrolyte with added ionic liquid [BMIMPF6]." AIP Advances, vol. 5, p. 077178, 2015.

https://doi.org/10.1063/1.4927768

[36] K. Nakabayashi, Y. Sato, Y. Isawa, C. Lo, and H. Mori. "Ionic conductivity and assembled structures of imidazolium salt-based block copolymers with thermoresponsive segments." Polymers, vol. 9, no. 11, p. 616, 2017.

https://doi.org/10.3390/polym9110616

PMid:30965921 PMCid:PMC6418687

[37] E. Coletta, M.F. Toney, and C.W. Frank. "Influences of liquid electrolyte and polyimide identity on the structure and conductivity of polyimide-poly(ethylene glycol) materials." Journal of Applied Polymer Science, vol. 132, no. 12, 2014.

https://doi.org/10.1002/app.41675

[38] A.R. Polu, P.K. Singh, P.S. kumar, G.M. Joshi, T. Ramesh, I.M. Noor, A.Y. Madkhli, and S. Kakroo. "Development of solid polymer electrolytes based on poly (ethylene oxide) complexed with 2-trifluoromethyl-4, 5-dicyanoimidazole lithium salt and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid for Li-ion batteries." High Performance Polymers, vol. 35, no. 1, pp. 4-9, 2022

https://doi.org/10.1177/09540083221113035

Downloads

Published

02-04-2025

How to Cite

Handika, R. S., Ratri, C. R., Rohib, R., & Nugraha, A. F. (2025). The Effect of Ionic Liquid and Lithium Salt Electrolyte Addition on The Characteristics of Polyvinyl Alcohol/Chitosan-Based Membranes. Jurnal Sains Materi Indonesia, 26(2), 112–121. https://doi.org/10.55981/jsmi.2025.5011