Synthesis and Characterization of a Polystyrene-based Scintillator for Gamma Detection
DOI:
https://doi.org/10.55981/jsmi.2023.704Keywords:
Polystyrene, Scintillator, Gamma detection, RPMAbstract
This study aimed to create and examine plastic scintillators made from a polystyrene matrix, which are widely used in radiation detection due to their favorable properties such as rapid decay time, low cost, resistance to moisture, and ease of fabrication. The scintillators were doped with p-terphenyl (PTP) and 1,4-bis[2-(phenyloxazolyl)]-benzene (POPOP) using an injection method with an extruder machine. The materials were then characterized using various techniques. Fourier Transform Infrared Spectroscopy (FTIR) revealed the presence of aromatic chains which are essential for the scintillation process. Differential Scanning Calorimetry (DSC) analysis showed stable thermal properties with a glass transition temperature of approximately 100ºC. Scanning Electron Microscopy (SEM) showed that the surface of the polymer is amorphous with small bumps and protrusions likely caused by the PTP and POPOP dopants. The optical evaluation indicated that the sample could absorb UV photons up to 340 nm and emit photons in the wavelength range of 400-500 nm with a peak at 421 nm. Gamma spectra analysis indicated that the plastic scintillators performed well in gamma detection and could be used in a Radiation Portal Monitor (RPM).
Downloads
References
. Y. N. Kharzheev. "Scintillation counters in modern high-energy physics experiments." Phys. Part. Nucl., vol. 46, no. 4, pp. 678-728, 2015.
https://doi.org/10.1134/S1063779615040048
. C. H. Lee, J. Son, T. Kim, and Y. K. Kim. "Characteristics of Plastic Scintillators Fabricated by a Polymerization Reaction," Nucl. Eng. Technol., vol. 49, no. 3, pp. 592-597, 2016.
https://doi.org/10.1016/j.net.2016.10.001
. R. L. Metzger, K. A. Van Riper, K. F. Eckerman, and R. W. Leggett. "Detection of long-lived contaminants in cyclotron-produced radiopharmaceuticals by large area plastic scintillators." J. Radioanal. Nucl. Chem., vol. 318, pp. 11-15, 2018.
https://doi.org/10.1007/s10967-018-5971-5
. P. Blanc, M. Hamel, C. Dehé-Pittance, L. Rocha, R. B. Pansu, and S. Normand. "Neutron/gamma pulse shape discrimination in plastic scintillators: Preparation and characterization of various compositions." Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 750, pp. 1-11, 2014.
https://doi.org/10.1016/j.nima.2014.02.053
. T. J. Hajagos, C. Liu, N. J. Cherepy, and Q. Pei. "High-Z sensitized plastic scintillators: A review." Adv. Mater., vol. 30, no. 27, 2018.
https://doi.org/10.1002/adma.201706956
. H. Kang, S. Min, B. Seo, C. Roh, S. Hong, and J. H. Cheong. "Preliminary studies of perovskite-loaded plastic scintillator prototypes for radioactive strontium detection." Chemosensors, vol. 9, no. 3, pp. 1-14, 2021.
https://doi.org/10.3390/chemosensors9030053
. A. Pla-Dalmau, A. D. Bross, and V. V. Rykalin. "Extruding plastic scintillator at Fermilab," IEEE Nucl. Sci. Symp. Conf. Rec., vol. 1, pp. 102-104, 2003.
https://doi.org/10.1109/NSSMIC.2003.1352007
. A. F. Adadurov, P. N. Zhmurin, V. N. Lebedev, and V. D. Titskaya. "Optimizing concentration of shifter additive for plastic scintillators of different size." Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 599, no. 2-3, pp. 167-170, 2009.
https://doi.org/10.1016/j.nima.2008.11.014
. S. Min, H. Kang, B. Seo, C. Roh, S. Hong, and J. Cheong. "Integrated and portable probe based on functional plastic scintillator for detection of radioactive cesium." Appl. Sci., vol. 11, no. 11, 2021.
https://doi.org/10.3390/app11115210
. L. Alex, R. Paulraj, and M. Tyagi. "Effect of PPO and POPOP activators on the scintillation performance of polystyrene-based scintillator." J. Optoelectron. Adv. Mater., vol. 24, no. 7-8, pp. 365-371, 2022.
. M. Hamel. "Progress in fast and red plastic scintillators." Chemosensors, vol. 10, p. 86, 2022.
https://doi.org/10.3390/chemosensors10020086
. D. geon Kim, S. Lee, J. Park, J. Son, T. H. Kim, Y. H. Kim, K. Pak, and Y. K. Kim. "Performance of 3D printed plastic scintillators for gamma-ray detection." Nucl. Eng. Technol., vol. 52, no. 12, pp. 2910-2917, 2020.
https://doi.org/10.1016/j.net.2020.05.030
. M. Pancoko, H. L. Nuri, A. Manaf, A. Dimyati, A. Jami, and H. Subhiyah. "Comparative study between fabricated plastic scintillator and existing product for gamma detection." in Journal of Physics: Conference Series, 2022, vol. 2377, no. 1.
https://doi.org/10.1088/1742-6596/2377/1/012046
. H.-D. Wu, S.-C. Wu, I.-D. Wu, and F.-C. Chang. "Novel determination of the crystallinity of syndiotactic polystyrene using FTIR spectrum." Polymer (Guildf)., vol. 42, no. 10, pp. 4719-4725, 2001.
https://doi.org/10.1016/S0032-3861(00)00849-1
. M. Jaymand. "Exfoliated syndiotactic polystyrene-graft-poly(methyl methacrylate)/montmorillonite nanocomposite prepared by solvent blending." Polym. J., vol. 43, no. 11, pp. 901-908, 2011.
https://doi.org/10.1038/pj.2011.79
. A. Wieczorek. "Development of Novel Plastic Scintillators Based on Polyvinyltoluene for the Hybrid J-PET / MR Tomograph," Doctoral dissertation, Jagiellonian University, Polandia, 2017.
. C. Martins, F. Hallwass, Y. Almeida, and M. A. De Paoli. "Solid-state 13C NMR analysis of sulfonated polystyrene." Ann. Magn. Reson, vol. 6, no. 1/2, pp. 46-55, 2007.
. P. C. Hiemenz and T. P. Lodge. "Polymer chemistry 2nd edition." NICE (News & Information for Chemical Engineers, vol. 25, no. 4, p. 587, 2007
https://doi.org/10.1201/9781420018271
. A. R. Rennie. "Amorphous polymers BT," in Mechanical properties and testing of polymers: An A-Z reference. G. M. Swallowe, Ed. Dordrecht: Springer Netherlands, 1999, pp. 23-24.
https://doi.org/10.1007/978-94-015-9231-4_6
. M. S. Ł. Kapłon. "PhD thesis Synthesis and Characterization of Polystyrene Scintillators and Their Application in Positron Emission Tomography." PhD thesis, Jagiellonian University, Polandia, 2017.
. Epic Crystal [Online]. Available: https://www.epic-crystal.com/others/plastic-scintillator.html.
. A. Bavali, P. Parvin, M. Tavassoli, and M. R. Mohebbifar. "Angular distribution of laser-induced fluorescence emission of active dyes in scattering media." Appl. Opt., vol. 57, p. B32, 2018.
https://doi.org/10.1364/AO.57.000B32
. R. Capelletti, "Luminescence," F. Bassani, G. L. Liedl, and P. B. T.-E. of C. M. P. Wyder, Eds. Oxford: Elsevier, 2005, pp. 178-189.
https://doi.org/10.1016/B0-12-369401-9/00675-6
. J. J. Stephanos and A. W. Addison. "Chapter 1 - Particle Wave Duality," in Atoms, and Molecules in Inorganic Chemistry. J. J. Stephanos and A. W. B. T.-E. Addison, Eds. Academic Press, 2017, pp. 1-33.
https://doi.org/10.1016/B978-0-12-811048-5.00001-8
. C.-K. Qiao, J.-W. Wei, and L. Chen. "An overview of the compton scattering calculation," Crystals, vol. 11, no. 5. 2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Marliyadi Pancoko, Hafni Lissa Nuri, Azwar Manaf, Arbi Dimyati, Abdul Jami
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.