Recent Progress on Colorimetric Sensor for Hg(II) Detection

Authors

DOI:

https://doi.org/10.55981/jsmi.2025.8937

Keywords:

mercury, colorimetric, sensor

Abstract

Mercury (Hg) contamination presents significant effects on human health and the environmental, particularly caused by its bio-accumulative and neurotoxic properties. Effective detection of Hg(II) is essential for monitoring and mitigating its impact. Among various detection methods, colorimetric sensors have developed into a promising solution due to their affordability, simplicity, and real-time detection capabilities. This review summarizes recent advancements in colorimetric sensors for Hg(II) detection, focusing on innovative materials such as silver nanoparticles (AgNPs), gold nanoparticles (AuNPs), paper-based substrates, agarose biopolymers, and carbon dots (CDs). AuNPs and AgNPs are highlighted for their unique optical properties and sensitivity, enabling visible detection through surface plasmon resonance changes. Paper-based sensors offer portability and low-cost solutions, while agarose serves as a stable biopolymer matrix for immobilizing detection agents. CDs, with their tunable fluorescence properties and green synthesis potential, provide a biocompatible option for hybrid sensing systems. Despite significant progress, challenges such as stability, selectivity in complex matrices, and scalability of green synthesis remain. Future research should focus on integrating these sensors into portable platforms and enhancing their performance for field applications. This review underscores the critical role of innovative materials and sustainable techniques in advancing mercury detection technologies

Downloads

Download data is not yet available.

References

[1] P. Grandjean, “Mercury,” in Textbook of Children’s Environmental Health, Oxford University PressNew York, 2024, pp. 427–436. doi: 10.1093/oso/9780197662526.003.0032.

[2] D. W. Boening, “Ecological effects, transport, and fate of mercury: a general review,” Chemosphere, vol. 40, no. 12, pp. 1335–1351, Jun. 2000, doi: 10.1016/S0045-6535(99)00283-0.

[3] P. Grandjean, P. Weihe, R. F. White, and F. Debes, “Cognitive Performance of Children Prenatally Exposed to ‘Safe’ Levels of Methylmercury,” Environ. Res., vol. 77, no. 2, pp. 165–172, May 1998, doi: 10.1006/enrs.1997.3804.

[4] UNEP, Global Mercury 2013: Sources, Emissions, Releases and Environmental Transport. Geneva: UNEP Chemicals Branch.

[5] C. Bendicho, I. Lavilla, F. Pena-Pereira, I. de la Calle, and V. Romero, “Paper-based analytical devices for colorimetric and luminescent detection of mercury in waters: An overview,” Sensors, vol. 21, no. 22, 2021, doi: 10.3390/s21227571.

[6] V. Poornima, V. Alexandar, S. Iswariya, P. T. Perumal, and T. S. Uma, “Gold nanoparticle-based nanosystems for the colorimetric detection of Hg2+ ion contamination in the environment,” RSC Adv., vol. 6, no. 52, pp. 46711–46722, 2016, doi: 10.1039/c6ra04433f.

[7] G. Sener, L. Uzun, and A. Denizli, “Lysine-Promoted Colorimetric Response of Gold Nanoparticles: A Simple Assay for Ultrasensitive Mercury(II) Detection,” Anal. Chem., vol. 86, no. 1, pp. 514–520, Jan. 2014, doi: 10.1021/ac403447a.

[8] D. Zhang et al., “Fluorescent Hydrogel-Coated Paper/Textile as Flexible Chemosensor for Visual and Wearable Mercury(II) Detection,” Adv. Mater. Technol., vol. 4, no. 1, pp. 1–10, 2019, doi: 10.1002/admt.201800201.

[9] Y. Chen et al., “Rapid and ultrasensitive colorimetric detection of mercury(II) by chemically initiated aggregation of gold nanoparticles,” Microchim. Acta, vol. 182, no. 13–14, pp. 2147–2154, 2015, doi: 10.1007/s00604-015-1538-0.

[10] W. Chansuvarn, T. Tuntulani, and A. Imyim, “Colorimetric detection of mercury(II) based on gold nanoparticles, fluorescent gold nanoclusters and other gold-based nanomaterials,” TrAC - Trends Anal. Chem., vol. 65, no. Ii, pp. 83–96, 2015, doi: 10.1016/j.trac.2014.10.013.

[11] P. Singh, Y. J. Kim, D. Zhang, and D. C. Yang, “Biological Synthesis of Nanoparticles from Plants and Microorganisms,” Trends Biotechnol., vol. 34, no. 7, pp. 588–599, 2016, doi: 10.1016/j.tibtech.2016.02.006.

[12] M. Annadhasan, T. Muthukumarasamyvel, V. R. Sankar Babu, and N. Rajendiran, “Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium,” ACS Sustain. Chem. Eng., vol. 2, no. 4, pp. 887–896, 2014, doi: 10.1021/sc400500z.

[13] E. Priyadarshini and N. Pradhan, “Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review,” Sensors Actuators, B Chem., vol. 238, pp. 888–902, 2017, doi: 10.1016/j.snb.2016.06.081.

[14] N. Zohora, D. Kumar, M. Yazdani, V. M. Rotello, R. Ramanathan, and V. Bansal, “Rapid colorimetric detection of mercury using biosynthesized gold nanoparticles,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 532, pp. 451–457, 2017, doi: 10.1016/j.colsurfa.2017.04.036.

[15] P. C. Yang, T. Wu, and Y. W. Lin, “Label-free colorimetric detection of mercury (II) ions based on gold nanocatalysis,” Sensors (Switzerland), vol. 18, no. 9, 2018, doi: 10.3390/s18092807.

[16] F. A. Saputri, E. U. Zubaidah, A. W. P. Kenanga, C. Jatmika, R. Pratiwi, and V. A. Dhumale, “Development of a Colorimetric Paper Sensor for Hg2+ Detection in Water Using Cyanuric Acid-Conjugated Gold Nanoparticles,” Molecules, vol. 28, no. 18, pp. 1–13, 2023, doi: 10.3390/molecules28186527.

[17] M. A. Shenashen, S. A. El-Safty, and E. A. Elshehy, “Synthesis, morphological control, and properties of silver nanoparticles in potential applications,” Part. Part. Syst. Charact., vol. 31, no. 3, pp. 293–316, 2014, doi: 10.1002/ppsc.201300181.

[18] K. M. M. Abou El-Nour, A. Eftaiha, A. Al-Warthan, and R. A. A. Ammar, “Synthesis and applications of silver nanoparticles,” Arab. J. Chem., vol. 3, no. 3, pp. 135–140, 2010, doi: 10.1016/j.arabjc.2010.04.008.

[19] X. F. Zhang, Z. G. Liu, W. Shen, and S. Gurunathan, “Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches,” Int. J. Mol. Sci., vol. 17, no. 9, 2016, doi: 10.3390/ijms17091534.

[20] P. Mathur, S. Jha, S. Ramteke, and N. K. Jain, “Pharmaceutical aspects of silver nanoparticles,” Artif. Cells, Nanomedicine Biotechnol., vol. 46, no. sup1, pp. 115–126, 2018, doi: 10.1080/21691401.2017.1414825.

[21] P. Jarujamrus, M. Amatatongchai, A. Thima, T. Khongrangdee, and C. Mongkontong, “Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 142, pp. 86–93, 2015, doi: 10.1016/j.saa.2015.01.084.

[22] M. Sabela, S. Balme, M. Bechelany, J. M. Janot, and K. Bisetty, “A Review of Gold and Silver Nanoparticle-Based Colorimetric Sensing Assays,” Adv. Eng. Mater., vol. 19, no. 12, pp. 1–24, 2017, doi: 10.1002/adem.201700270.

[23] P. Prosposito, L. Burratti, and I. Venditti, “Silver nanoparticles as colorimetric sensors for water pollutants,” Chemosensors, vol. 8, no. 2, pp. 1–29, 2020, doi: 10.3390/CHEMOSENSORS8020026.

[24] L. Chen, L. Chan, X. Fu, and W. Lu, “Highly sensitive and selective colorimetric sensing of Hg2+ based on the morphology transition of silver nanoprisms,” ACS Appl. Mater. Interfaces, vol. 5, no. 2, pp. 284–290, Jan. 2013, doi: 10.1021/am3020857.

[25] M. Das, K. H. Shim, S. S. A. An, and D. K. Yi, “Review on gold nanoparticles and their applications,” Toxicol. Environ. Health Sci., vol. 3, no. 4, pp. 193–205, Dec. 2011, doi: 10.1007/s13530-011-0109-y.

[26] R. Memon et al., “Ultrasensitive colorimetric detection of Hg2+ in aqueous media via green synthesis by Ziziphus mauritiana Leaf extract-based silver nanoparticles,” Int. J. Environ. Anal. Chem., vol. 102, no. 18, pp. 7046–7061, 2022, doi: 10.1080/03067319.2020.1822353.

[27] A. J. Mwakalesi and M. J. Nyangi, “Colorimetric Sensing of Mercury in Aqueous Solutions Using Silver Nanoparticles Prepared from Synadenium glaucescens Root Aqueous Extract,” in The 4th International Electronic Conference on Applied Sciences, Basel Switzerland: MDPI, Oct. 2023, p. 182. doi: 10.3390/ASEC2023-15310.

[28] Y. Yang, E. Noviana, M. P. Nguyen, B. J. Geiss, D. S. Dandy, and C. S. Henry, “Paper-Based Microfluidic Devices: Emerging Themes and Applications,” Anal. Chem., vol. 89, no. 1, pp. 71–91, Jan. 2017, doi: 10.1021/acs.analchem.6b04581.

[29] S. Malik et al., “Paper-based sensors: affordable, versatile, and emerging analyte detection platforms,” Anal. Methods, vol. 16, no. 18, pp. 2777–2809, 2024, doi: 10.1039/D3AY02258G.

[30] L. A. Pradela-Filho et al., “Paper-based analytical devices for point-of-need applications,” Microchim. Acta, vol. 190, no. 5, p. 179, May 2023, doi: 10.1007/s00604-023-05764-5.

[31] M. B. Thohir, R. Roto, and S. Suherman, “A Sol-gel Membrane Utilized Cellulose Paper Doped with α-furil Dioxime for Colorimetric Determination of Nickel,” Bull. Environ. Contam. Toxicol., vol. 109, no. 6, pp. 1183–1189, Dec. 2022, doi: 10.1007/s00128-022-03622-3.

[32] E. Evans, E. F. Moreira Gabriel, T. E. Benavidez, W. K. Tomazelli Coltro, and C. D. Garcia, “Modification of microfluidic paper-based devices with silica nanoparticles,” Analyst, vol. 139, no. 21, pp. 5560–5567, 2014, doi: 10.1039/C4AN01147C.

[33] C. Diez-Gil et al., “Cellulose-Based Optical Sensor for the Selective and Quantitative Detection of Mercury Ions in Aqueous Media,” in TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference, IEEE, 2007, pp. 1429–1431. doi: 10.1109/SENSOR.2007.4300412.

[34] L. Hu, B. Zhu, L. Zhang, H. Yuan, Q. Zhao, and Z. Yan, “Chitosan–gold nanocomposite and its functionalized paper strips for reversible visual sensing and removal of trace Hg 2+ in practice,” Analyst, vol. 144, no. 2, pp. 474–480, 2019, doi: 10.1039/C8AN01707G.

[35] P. Kamnoet, W. Aeungmaitrepirom, R. F. Menger, and C. S. Henry, “Highly selective simultaneous determination of Cu(ii), Co(ii), Ni(ii), Hg(ii), and Mn(ii) in water samples using microfluidic paper-based analytical devices,” Analyst, vol. 146, no. 7, pp. 2229–2239, 2021, doi: 10.1039/d0an02200d.

[36] L. Cai et al., “Visual quantification of Hg on a microfluidic paper-based analytical device using distance-based detection technique,” AIP Adv., vol. 7, no. 8, Aug. 2017, doi: 10.1063/1.4999784.

[37] S. K. Patil and D. Das, “A nanomolar detection of mercury(II) ion by a chemodosimetric rhodamine-based sensor in an aqueous medium: Potential applications in real water samples and as paper strips,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 210, pp. 44–51, Mar. 2019, doi: 10.1016/j.saa.2018.11.005.

[38] E. G. C. Ergun, “Three in one sensor: a fluorometric, colorimetric and paper based probe for the selective detection of mercury( ii ),” New J. Chem., vol. 45, no. 9, pp. 4202–4209, 2021, doi: 10.1039/D1NJ00085C.

[39] H. L. Nashukha, J. Sitanurak, H. Sulistyarti, D. Nacapricha, and K. Uraisin, “Simple and Equipment-Free Paper-Based Device for Determination of Mercury in Contaminated Soil,” Molecules, vol. 26, no. 7, p. 2004, Apr. 2021, doi: 10.3390/molecules26072004.

[40] P. Zarrintaj et al., “Agarose-based biomaterials for tissue engineering,” Carbohydr. Polym., vol. 187, pp. 66–84, May 2018, doi: 10.1016/j.carbpol.2018.01.060.

[41] R. Helim, A. Zazoua, N. Jaffrezic-Renault, and H. Korri-Youssoufi, “Label free electrochemical sensors for Pb(II) detection based on hemicellulose extracted from Opuntia Ficus Indica cactus,” Talanta, vol. 265, p. 124784, Dec. 2023, doi: 10.1016/j.talanta.2023.124784.

[42] K. Alizadeh, R. Parooi, P. Hashemi, B. Rezaei, and M. R. Ganjali, “A new Schiff’s base ligand immobilized agarose membrane optical sensor for selective monitoring of mercury ion,” J. Hazard. Mater., vol. 186, no. 2–3, pp. 1794–1800, Feb. 2011, doi: 10.1016/j.jhazmat.2010.12.067.

[43] Z. You et al., “Agarose Film-Based Liquid–Solid Conversion for Heavy Metal Detection of Water Samples by Laser-Induced Breakdown Spectroscopy,” Molecules, vol. 28, no. 6, p. 2777, Mar. 2023, doi: 10.3390/MOLECULES28062777.

[44] K. Alizadeh, B. Rezaei, and E. Khazaeli, “An agarose based optical membrane sensor for selective monitoring of trace nickel ions,” J. Photochem. Photobiol. A Chem., vol. 417, p. 113371, Aug. 2021, doi: 10.1016/J.JPHOTOCHEM.2021.113371.

[45] H. Hassanvand and P. Hashemi, “Synthesis of Silver Nanoparticles-Agarose Composite and Its Application to the Optical Detection of Cyanide Ion,” Anal. Sci., vol. 34, no. 5, pp. 567–570, May 2018, doi: 10.2116/analsci.17P577.

[46] Z. Fu et al., “Preparation of Agarose Fluorescent Hydrogel Inserted by POSS and Its Application for the Identification and Adsorption of Fe3+,” Gels, vol. 7, no. 4, p. 173, Oct. 2021, doi: 10.3390/gels7040173.

[47] S. Bhatt, G. Vyas, and P. Paul, “A New Molecular Probe for Colorimetric and Fluorometric Detection and Removal of Hg2+ and its Application as Agarose Film-Based Sensor for On-Site Monitoring,” J. Fluoresc., vol. 30, no. 6, pp. 1531–1542, Dec. 2020, doi: 10.1007/s10895-020-02625-9.

[48] F. Jiang et al., “Extraction, Modification and Biomedical Application of Agarose Hydrogels: A Review,” Mar. Drugs, vol. 21, no. 5, p. 299, May 2023, doi: 10.3390/md21050299.

[49] K. M. Nshnsh, O. Cavoura, C. M. Davidson, and L. T. Gibson, “Low-cost colorimetric mercury sensor based on immobilisation of rhodamine B thiolactone in a sustainable agar-agar gel substrate,” Microchem. J., vol. 195, p. 109481, Dec. 2023, doi: 10.1016/j.microc.2023.109481.

[50] J. P. Chaudhary, A. Kumar, P. Paul, and R. Meena, “Carboxymethylagarose-AuNPs generated through green route for selective detection of Hg2+ in aqueous medium with a blue shift,” Carbohydr. Polym., vol. 117, pp. 537–542, 2015, doi: 10.1016/j.carbpol.2014.10.016.

[51] J. A. Jaleel and K. Pramod, “Artful and multifaceted applications of carbon dot in biomedicine,” J. Control. Release, vol. 269, pp. 302–321, Jan. 2018, doi: 10.1016/j.jconrel.2017.11.027.

[52] S. Y. Lim, W. Shen, and Z. Gao, “Carbon quantum dots and their applications,” Chem. Soc. Rev., vol. 44, no. 1, pp. 362–381, 2015, doi: 10.1039/C4CS00269E.

[53] P. Kamble, D. Malavekar, and A. P. Tiwari, “Natural Biowaste Derived Fluorescent Carbon Quantum Dots: Synthesis, Characterization and Biocompatibility Study,” J. Fluoresc., vol. 34, no. 1, pp. 191–201, Jan. 2024, doi: 10.1007/s10895-023-03244-w.

[54] T. J. Pillar-Little, N. Wanninayake, L. Nease, D. K. Heidary, E. C. Glazer, and D. Y. Kim, “Superior photodynamic effect of carbon quantum dots through both type I and type II pathways: Detailed comparison study of top-down-synthesized and bottom-up-synthesized carbon quantum dots,” Carbon N. Y., vol. 140, pp. 616–623, Dec. 2018, doi: 10.1016/j.carbon.2018.09.004.

[55] D. M. A. Crista, J. C. G. Esteves da Silva, and L. Pinto da Silva, “Evaluation of Different Bottom-up Routes for the Fabrication of Carbon Dots,” Nanomaterials, vol. 10, no. 7, p. 1316, Jul. 2020, doi: 10.3390/nano10071316.

[56] H. F. Etefa, A. A. Tessema, and F. B. Dejene, “Carbon Dots for Future Prospects: Synthesis, Characterizations and Recent Applications: A Review (2019–2023),” C, vol. 10, no. 3, p. 60, Jul. 2024, doi: 10.3390/c10030060.

[57] G. Ge et al., “Carbon dots: synthesis, properties and biomedical applications,” J. Mater. Chem. B, vol. 9, no. 33, pp. 6553–6575, 2021, doi: 10.1039/D1TB01077H.

[58] Y. Wang, Y. Zhu, S. Yu, and C. Jiang, “Fluorescent carbon dots: rational synthesis, tunable optical properties and analytical applications,” RSC Adv., vol. 7, no. 65, pp. 40973–40989, 2017, doi: 10.1039/C7RA07573A.

[59] B. Wang, H. Cai, G. I. N. Waterhouse, X. Qu, B. Yang, and S. Lu, “Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review,” Small Sci., vol. 2, no. 6, Jun. 2022, doi: 10.1002/smsc.202200012.

[60] H. Li et al., “Recent advances in carbon dots for bioimaging applications,” Nanoscale Horizons, vol. 5, no. 2, pp. 218–234, 2020, doi: 10.1039/C9NH00476A.

[61] Q. Tan et al., “One-step synthesis of highly fluorescent carbon dots as fluorescence sensors for the parallel detection of cadmium and mercury ions,” Front. Chem., vol. 10, Sep. 2022, doi: 10.3389/fchem.2022.1005231.

[62] W. Wei, J. Huang, W. Gao, X. Lu, and X. Shi, “Carbon Dots Fluorescence-Based Colorimetric Sensor for Sensitive Detection of Aluminum Ions with a Smartphone,” Chemosensors, vol. 9, no. 2, p. 25, Jan. 2021, doi: 10.3390/chemosensors9020025.

[63] D. Yoo, Y. Park, B. Cheon, and M.-H. Park, “Carbon Dots as an Effective Fluorescent Sensing Platform for Metal Ion Detection,” Nanoscale Res. Lett., vol. 14, no. 1, p. 272, Dec. 2019, doi: 10.1186/s11671-019-3088-6.

[64] K. Zhang, Y. Sang, Y. Gao, Q. Sun, and W. Li, “A fluorescence turn-on CDs-AgNPs composites for highly sensitive and selective detection of Hg2+,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 264, p. 120281, Jan. 2022, doi: 10.1016/j.saa.2021.120281.

[65] J. Y. Liang, L. Han, S. G. Liu, Y. J. Ju, N. B. Li, and H. Q. Luo, “Carbon dots-based fluorescent turn off/on sensor for highly selective and sensitive detection of Hg2+ and biothiols,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 222, p. 117260, Nov. 2019, doi: 10.1016/j.saa.2019.117260.

[66] D. Bano, V. Kumar, V. K. Singh, and S. H. Hasan, “Green synthesis of fluorescent carbon quantum dots for the detection of mercury( ii ) and glutathione,” New J. Chem., vol. 42, no. 8, pp. 5814–5821, 2018, doi: 10.1039/C8NJ00432C.

[67] Y. Liu et al., “Fast and efficient ‘on-off-on’ fluorescent sensor from N-doped carbon dots for detection of mercury and iodine ions in environmental water,” Sci. Total Environ., vol. 827, p. 154357, Jun. 2022, doi: 10.1016/j.scitotenv.2022.154357.

[68] K. Patir and S. K. Gogoi, “Nitrogen-doped carbon dots as fluorescence ON–OFF–ON sensor for parallel detection of copper( ii ) and mercury( ii ) ions in solutions as well as in filter paper-based microfluidic device,” Nanoscale Adv., vol. 1, no. 2, pp. 592–601, 2019, doi: 10.1039/C8NA00080H.

[69] S. Thanomsak, S. Kerdphon, A. Sirikulkajorn, T. Tuntulani, and W. Janrungroatsakul, “A simple fluorescent ‘on-off-on’ nanosensor based on nitrogen-doped carbon dots for selective detection of Hg2+ and thiamine,” Opt. Mater. (Amst)., vol. 151, p. 115336, May 2024, doi: 10.1016/j.optmat.2024.115336.

[70] Q. Ye et al., “N, B-doped carbon dots as a sensitive fluorescence probe for Hg 2+ ions and 2,4,6-trinitrophenol detection for bioimaging,” J. Photochem. Photobiol. B Biol., vol. 162, pp. 1–13, Sep. 2016, doi: 10.1016/j.jphotobiol.2016.06.021.

[71] Z. Li et al., “A fluorescence probe based on the nitrogen-doped carbon dots prepared from orange juice for detecting Hg 2+ in water,” J. Lumin., vol. 187, pp. 274–280, Jul. 2017, doi: 10.1016/j.jlumin.2017.03.023.

[72] C. Chu et al., “Synthesis of two nitrogen-doped carbon quantum dots to construct fluorescence probes for sensitive Hg 2+ detection with dual signal output,” Dalt. Trans., vol. 52, no. 23, pp. 7982–7991, 2023, doi: 10.1039/D3DT00663H.

Downloads

Published

31-08-2025

How to Cite

Hakim, M. S., Hermayantiningsih, D., Wahyuningsih Manurung, T., Ariefin, M., & Roil Bilad, M. (2025). Recent Progress on Colorimetric Sensor for Hg(II) Detection. Jurnal Sains Materi Indonesia, 27(1), 1–10. https://doi.org/10.55981/jsmi.2025.8937