This Section consists of Abstract Collection Page, Keywords Index Page and Acknowledgment Page
DOI:
https://doi.org/10.17146/tdm.2022.24.1.6329Keywords:
Reactivity coefficient, PWR reactor, Moderator, Fuel pellet, WIMSD-5BAbstract
The Fuel Temperature Reactivity Coefficient (FTRC) is an important parameter in design, control, and safety, particularly in PWR reactor. It is then very important to validate any new library for an accurate prediction of this parameter. The objective of this work is to determine the value of the FTRC parameter using the new WIMDS library based on ENDF/B-VIII.0 nuclear data files. For this purpose, it is used a set of light water moderated lattice experiments as the PWR-1175 MWe experiment critical reactors, the reactor using UO2 fuel pellet. The analysis is used with WIMSD-5B lattice code with original cross-section libraries and WIMSD-5B with ENDF/B-VIII.0 new cross-section libraries. The results showed that the fuel temperatures reactivity coefficients for the PWR reactor using original libraries is – 3.10 pcm/K with enrichment of 3.1% but for ENDF/B-VlII.0 libraries is – 3.00 pcm/K. Compared to the experimental data of the reactor core, the difference is in the range of 6.9 % for ENDF/B-VIII.0 libraries. It can be concluded that for the reactor, it is better to use ENDF/B-VIII.0 libraries because the original library is not accurate anymore.
References
Pinem S., Sembiring T.M., Surbakti T. Core Conversion Design Study of TRIGA Mark 2000 Bandung using MTR Plate Type Fuel Element. Int. J. Nucl. Energy Sci. Technol. 2018. 12(3):222-238.
https://doi.org/10.1504/IJNEST.2018.095689
Surbakti T., Purwadi P. Analysis of Neutronic Safety Parameters of the Multi-Purpose Reactor-Gerrit Augustinus Siwabessy (RSG-GAS) Research Reactor at Serpong. J. Penelit. Fis. dan Apl. 2019. 9(1):78-91.
https://doi.org/10.26740/jpfa.v9n1.p78-91
Surian P., Tagor M. S., Tukiran S. Verifikasi Program PWR-fuel Dalam Manajemen Bahan Bakar PWR. JSTNI. 2015. 16(1): 53-62.
https://doi.org/10.17146/jstni.2015.16.1.2357
Dawahra S., Khattab K., Saba G. Extending the Maximum Operation Time of the MNSR Reactor. Appl. Radiat. Isot. 2016. 115:256-261.
https://doi.org/10.1016/j.apradiso.2016.06.031
Dawahra S., Khattab K., Saba G. Calculation and Comparison of Xenon and Samarium Reactivities of the HEU, LEU Core in the Low Power Research Reactor. Appl. Radiat. Isot. 2015. 101:27-32.
https://doi.org/10.1016/j.apradiso.2015.03.015
Surbakti T., Pinem S., Suparlina L. Dynamic Analysis on the Safety Criteria of the Conceptual Core Design in MTR-type Research Reactor. Atom Indones. 2018. 44(2):89-97.
https://doi.org/10.17146/aij.2018.545
Surbakti T., Pinem S., Sembiring T.M., Hamzah A., Nabeshima K. Calculation of Control Rods Reactivity Worth of RSG-GAS First Core using Deterministic and Monte Carlo Methods. Atom Indones. 2019. 45(2):69-79.
https://doi.org/10.17146/aij.2019.810
Pinem S., Sembiring T.M., Liem P.H. Neutronic and Thermal-hydraulic Safety Analysis for the Optimization of the Uranium Foil Target in the RSG-GAS Reactor. 2016. 42(3):123-128.
https://doi.org/10.17146/aij.2016.532
Iman K., Surian P., Tagor M.S., and Tukiran S. Evaluation of Fuel Loading Pattern of PWR Core Using PWR-FUEL Code. : AIP Conference Proceedings. 2019. 2180,020007.
Hend S., Moustafa A., Riham R., Hesham M. Core Neutronic Characterization of Advanced Pressurized Water Reactor. Journal of Nuclear and Particle Physics. 2021. 11(1): 7-14.
Zakir, M., Sarkar M., and Hossain A. Analysis of Neutronics and Thermal-Hydraulic Behavior in a Fuel Pin of Pressurized Water Reactor (PWR). World Journal of Nuclear Science and Technology. 2019. 9: 74-83.
https://doi.org/10.4236/wjnst.2019.92005
Nicholas R.B., Hans L., Arnold A., Gilad R., Michael T. Neutronic Evaluation of a PWR with Fully Ceramic Microencapsulated Fuel. Part II: Nodal Core Calculations and Preliminary Study of Thermal Hydraulic Feedback. Annals of Nuclear Energy. 2013. 62: 548-557.
https://doi.org/10.1016/j.anucene.2013.05.027
Pinem S., et al. PWR Fuel Macroscopic Cross Section Analysis for Calculation Core Fuel Management Benchmark. 2019. J. Phys.: Conf. Ser. 1198 022065.
https://doi.org/10.1088/1742-6596/1198/2/022065
Surian Pinem et al. Reactivity Coefficient Calculation for AP1000 Reactor Using the NODAL3 Code. 2018. J. Phys.: Conf. Ser. 962 012057.
https://doi.org/10.1088/1742-6596/962/1/012057
Surbakti T., Imron M. Fuel Burn-up Calculation for Working Core of the RSG-GAS Research Reactor at Batan Serpong. J. Penelit. Fis. dan Apl. 2017. 7(2):89-101.
https://doi.org/10.26740/jpfa.v7n2.p89-101
Michael A.P., Sen R. S., Abderrafi M.O., Gilles Y., Brian B. Neutronic Analysis of the Burning of Transuranics in Fully Ceramic Micro-encapsulated Tri-isotropic Particle-fuel in a PWR. Nuclear Engineering and Design. 2012. 252: 215-225.
https://doi.org/10.1016/j.nucengdes.2012.07.013
Pinem S., Surbakti T., Sembiring T., et al. Optimization of Radioisotope Production at RSG-GAS Reactor using Deterministic Method. Journal Teknologi Indonesia 2016. 1 (2):12-18.